cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125251 a(n)=sqrt(A051779(n+2)-1)/30.

Original entry on oeis.org

5, 6, 8, 9, 14, 19, 43, 44, 77, 85, 91, 112, 113, 142, 155, 195, 196, 212, 226, 300, 308, 321, 351, 363, 399, 456, 461, 467, 485, 541, 555, 602, 604, 618, 638, 646, 720, 728, 779, 789, 891, 896, 923, 980, 1009, 1099, 1105, 1150, 1176, 1234, 1253, 1287, 1392
Offset: 1

Views

Author

Zak Seidov, Nov 26 2006

Keywords

Comments

Consider twin primes p, q = p + 2 such that pq + 2 is prime. It would seem that there are infinitely many such p. Except for p = 3 and p = 5 all such p appear to be of the form 30k - 1 and the values of k give the current sequence. - James R. Buddenhagen, Jan 09 2007
This is true. Prime numbers (other than 2,3,5) are 30k + 1,7,11,13,17,19,23,29. p+2 is then prime only for p = 30k + 11,17,29; then p(p+2)+2 is 30k + 25,25,1 respectively, so the last case mod 30 is the only one possible. - Gareth McCaughan, Jan 09 2007
This is the sequence of positive integers k such that p = 30*k - 1, q = 30*k + 1 and p*q + 2 are all prime. - James R. Buddenhagen, Jan 09 2007

Examples

			a(1)=5 because A051779(3)=22501 and sqrt(22501-1)/30=5,
a(2)=6 because A051779(4)=32401 and sqrt(32401-1)/30=6.
		

Crossrefs

Cf. A051779.

Programs

  • PARI
    isok(n) = isprime(p = 30*n+1) && isprime(q = 30*n-1) && isprime(p*q+2); \\ Michel Marcus, Oct 11 2013