A125270 Coefficient of x^2 in polynomial whose zeros are 5 consecutive primes starting with the n-th prime.
1358, 3954, 10478, 22210, 43490, 78014, 129530, 206650, 324350, 466270, 621466, 853742, 1132130, 1436690, 1870850, 2388050, 2886370, 3440410, 4133410, 4904906, 5926654, 7195670, 8425430, 9792950, 11040910, 12098990, 13917898, 16097810
Offset: 1
Keywords
Crossrefs
Cf. A001043, A034961, A034963, A034964, A127333, A127334, A127335, A127336, A127337, A127338, A127339, A127340, A127341, A127342, A127343, A127345, A127346, A127347, A127348, A127349, A127351, A037171, A034962, A034965, A082246, A082251, A070934, A006094, A046301, A046302, A046303, A046324, A046325, A046326, A046327, A127489.
Programs
-
Mathematica
a = {}; Do[AppendTo[a, (Prime[x] Prime[x + 1] Prime[x + 2] + Prime[x] Prime[x + 1] Prime[x + 3] + Prime[x] Prime[x + 1] Prime[x + 4] + Prime[x] Prime[x + 2] Prime[x + 3] + Prime[x] Prime[x + 2] Prime[x + 4] + Prime[x] Prime[x + 3] Prime[x + 4] + Prime[x + 1] Prime[x + 2] Prime[x + 3] + Prime[x + 1] Prime[x + 2] Prime[x + 4] + Prime[x + 1] Prime[x + 3] Prime[x + 4] + Prime[x + 2] Prime[x + 3] Prime[x + 4])], {x, 1, 100}]; a fcp[{p_,q_,r_,s_,t_}]:=p*q(r+s+t)+(p+q)r(s+t)+(p+q+r)s*t; fcp/@Partition[ Prime[ Range[40]],5,1] (* Harvey P. Dale, Sep 05 2014 *)
Formula
Let p = Prime(n), q = Prime(n+1), r = Prime(n+2), s = Prime(n+3) and t = Prime(n+4). Then a(n) = p q (r+s+t) + (p + q) r (s + t) + (p + q + r) s t.
Extensions
Edited and corrected by Franklin T. Adams-Watters, Jan 23 2007
Comments