A125273 Eigensequence of triangle A085478: a(n) = Sum_{k=0..n-1} A085478(n-1,k)*a(k) for n > 0 with a(0) = 1.
1, 1, 2, 6, 23, 106, 567, 3434, 23137, 171174, 1376525, 11934581, 110817423, 1095896195, 11487974708, 127137087319, 1480232557526, 18075052037054, 230855220112093, 3076513227516437, 42686898298650967, 615457369662333260
Offset: 0
Keywords
Examples
a(3) = 1*(1) + 3*(1) + 1*(2) = 6; a(4) = 1*(1) + 6*(1) + 5*(2) + 1*(6) = 23; a(5) = 1*(1) + 10*(1) + 15*(2) + 7*(6) + 1*(23) = 106. Triangle A085478(n,k) = binomial(n+k, n-k) (with rows n >= 0 and columns k = 0..n) begins: 1; 1, 1; 1, 3, 1; 1, 6, 5, 1; 1, 10, 15, 7, 1; 1, 15, 35, 28, 9, 1; ... where g.f. of column k = 1/(1-x)^(2*k+1).
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..517
- Guo-Niu Han, Enumeration of Standard Puzzles. [Cached copy]
- Guo-Niu Han, Enumeration of Standard Puzzles, arXiv:2006.14070 [math.CO], 2020.
- Jeffrey B. Remmel, Consecutive Up-down Patterns in Up-down Permutations, Electron. J. Combin., 21 (2014), #P3.2.
Programs
Formula
a(n) = Sum_{k=0..n-1} binomial(n+k-1, n-k-1)*a(k) for n > 0 with a(0) = 1.
G.f. satisfies: A(x) = 1 + x*A(x/(1-x)^2) / (1-x). - Paul D. Hanna, Aug 15 2007