Original entry on oeis.org
1, 1, 1, 2, 3, 2, 5, 9, 10, 7, 14, 28, 40, 49, 31, 42, 90, 150, 245, 279, 162, 132, 297, 550, 1078, 1674, 1782, 968, 429, 1001, 2002, 4459, 8463, 12474, 12584, 6481, 1430, 3432, 7280, 17836, 39060, 71280, 100672, 97215, 47893
Offset: 1
First few rows of the triangle =
1;
1, 1;
2, 3, 2;
5, 9, 10, 7;
14, 28, 40, 49, 31;
42, 90, 150, 245, 279, 162;
132, 297, 550, 1078, 1674, 1782, 968;
429, 1001, 2002, 4459, 8463, 12474, 12584, 6481;
1430, 3432, 7280, 17836, 39060, 71280, 100672, 97215, 47893;
...
Row 4 = (5, 9, 10, 7) = termwise products of (5, 9, 5, 1) and (1, 1, 2, 7)
A144250
Eigentriangle, row sums = A125275, shifted.
Original entry on oeis.org
1, 1, 1, 1, 3, 2, 1, 6, 10, 6, 1, 10, 30, 42, 23, 1, 15, 70, 168, 207, 106, 1, 21, 140, 504, 1035, 1166, 567, 1, 28, 252, 1260, 3795, 6996, 7371, 3434
Offset: 0
First few rows of the triangle =
1;
1, 1;
1, 3, 2;
1, 6, 10, 6;
1, 10, 30, 42, 23;
1, 15, 70, 168, 207, 106;
1, 21, 140, 504, 1035, 1166, 567;
...
Row 4 = (1, 10, 30, 42, 23) = termwise products of (1, 10, 15, 7, 1) and (1, 1, 2, 6, 23) = (1*1, 10*1, 15*2, 7*6, 1*23); where (1, 10, 15, 7, 1) = row 4 of triangle A085478. Q
A125276
Eigensequence of triangle A039598: a(n) = Sum_{k=0..n-1} A039598(n-1,k)*a(k) for n>0 with a(0)=1.
Original entry on oeis.org
1, 1, 3, 12, 58, 325, 2060, 14514, 112170, 941128, 8502393, 82160481, 844532873, 9191329357, 105491177081, 1272418794619, 16080824798705, 212370154398094, 2923859710010527, 41877072960374478, 622763691600244335
Offset: 0
a(3) = 5*(1) + 4*(1) + 1*(3) = 12;
a(4) = 14*(1) + 14*(1) + 6*(3) + 1*(12) = 58;
a(5) = 42*(1) + 48*(1) + 27*(3) + 8*(12) + 1*(58) = 325.
Triangle A039598(n,k) = C(2*n+2,n-k)*(k+1)/(n+1) begins:
1;
2, 1;
5, 4, 1;
14, 14, 6, 1;
42, 48, 27, 8, 1;
132, 165, 110, 44, 10, 1; ...
where g.f. of column k = G000108(x)^(2*k+2)
and G000108(x) = (1 - sqrt(1-4*x))/(2x) is the Catalan function.
-
A125276=ConstantArray[0,20]; A125276[[1]]=1; Do[A125276[[n]]=Binomial[2*n,n-1]/n+Sum[A125276[[k]]*Binomial[2*n,n-k-1]*(k+1)/n,{k,1,n-1}];,{n,2,20}]; Flatten[{1,A125276}] (* Vaclav Kotesovec, Dec 09 2013 *)
-
a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(2*n, n-k-1)*(k+1)/n))
Showing 1-3 of 3 results.
Comments