cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A125275 Eigensequence of triangle A039599: a(n) = Sum_{k=0..n-1} A039599(n-1,k)*a(k) for n > 0 with a(0) = 1.

Original entry on oeis.org

1, 1, 2, 7, 31, 162, 968, 6481, 47893, 386098, 3364562, 31460324, 313743665, 3320211313, 37124987124, 436985496790, 5397178181290, 69748452377058, 940762812167126, 13213888481979449, 192891251215160017
Offset: 0

Views

Author

Paul D. Hanna, Nov 26 2006

Keywords

Comments

Starting with offset 1, these are the row sums of triangle A147294. - Gary W. Adamson, Nov 05 2008

Examples

			a(3) = 2*(1) + 3*(1) + 1*(2) = 7;
a(4) = 5*(1) + 9*(1) + 5*(2) + 1*(7) = 31;
a(5) = 14*(1) + 28*(1) + 20*(2) + 7*(7) + 1*(31) = 162.
Triangle A039599(n,k) = C(2*n+1, n-k)*(2*k+1)/(2*n+1) (with rows n >= 0 and columns k = 0..n) begins:
   1;
   1,  1;
   2,  3,  1;
   5,  9,  5,  1;
  14, 28, 20,  7, 1;
  42, 90, 75, 35, 9, 1;
  ...
where the g.f. of column k is G000108(x)^(2*k+1)
and G000108(x) = (1 - sqrt(1 - 4*x))/(2*x) is the Catalan g.f. function.
		

Crossrefs

Cf. A000108, A039599, A125276 (variant), A147294.

Programs

  • Mathematica
    A125275=ConstantArray[0,20]; A125275[[1]]=1; Do[A125275[[n]]=Binomial[2*n-1,n-1]/(2*n-1)+Sum[A125275[[k]]*Binomial[2*n-1,n-k-1]*(2*k+1)/(2*n-1),{k,1,n-1}];,{n,2,20}]; Flatten[{1,A125275}] (* Vaclav Kotesovec, Dec 09 2013 *)
  • PARI
    a(n)=if(n==0,1,sum(k=0,n-1, a(k)*binomial(2*n-1, n-k-1)*(2*k+1)/(2*n-1)))

Formula

a(n) = Sum_{k=0..n-1} a(k) * C(2*n-1, n-k-1) * (2*k + 1)/(2*n - 1) for n > 0 with a(0) = 1.

A132289 Triangle, read by rows of 2n+1 terms, where T(n,k) = T(n,k-1) + T(n-1,k-1) for 2n>=k>0, T(n,2n-1) = T(n,2n-2) + T(n-1,n-1) and T(n,2n) = T(n,2n-1) + T(n-1,n-1) for n>0, with T(n,0) = T(n-1,n-1) for n>0 and T(0,0) = 1.

Original entry on oeis.org

1, 1, 2, 3, 3, 4, 6, 9, 12, 12, 15, 19, 25, 34, 46, 58, 58, 70, 85, 104, 129, 163, 209, 267, 325, 325, 383, 453, 538, 642, 771, 934, 1143, 1410, 1735, 2060, 2060, 2385, 2768, 3221, 3759, 4401, 5172, 6106, 7249, 8659, 10394, 12454, 14514, 14514, 16574, 18959
Offset: 0

Views

Author

Paul D. Hanna, Aug 18 2007

Keywords

Comments

Column 0 and the rightmost border (shifted right) equal A125276.

Examples

			Triangle begins:
  1;
  1, 2, 3;
  3, 4, 6, 9, 12;
  12, 15, 19, 25, 34, 46, 58;
  58, 70, 85, 104, 129, 163, 209, 267, 325;
  325, 383, 453, 538, 642, 771, 934, 1143, 1410, 1735, 2060;
  2060, 2385, 2768, 3221, 3759, 4401, 5172, 6106, 7249, 8659, 10394, 12454, 14514; ...
		

Crossrefs

Cf. A132290 (main diagonal), A125276 (column 0).

Programs

  • PARI
    T(n,k)=my(A=[1]);if(2*n
    				

A132290 Main diagonal of triangle A132289: a(n) = A132289(n,n) for n>=0.

Original entry on oeis.org

1, 2, 6, 25, 129, 771, 5172, 38280, 308987, 2695586, 25231269, 251869681, 2667876382, 29856632341, 351717286357, 4347357161694, 56222019376378, 758836553993985, 10665452531786380, 155785594704483911
Offset: 0

Views

Author

Paul D. Hanna, Aug 18 2007

Keywords

Comments

Equals the binomial transform of A125276.

Crossrefs

Programs

  • PARI
    {a(n)=local(A=[1]);if(n==0,1,for(i=1,n, A=Vec(Ser(concat(concat(A[ #A],A),A[ #A]))/(1-x)));A[n+1])}

Formula

G.f. A(x) satisfies: A( x*(1-x)/(1+x-x^2) )/(1+x-x^2) = 1 + x*A(x).
Showing 1-3 of 3 results.