A125276 Eigensequence of triangle A039598: a(n) = Sum_{k=0..n-1} A039598(n-1,k)*a(k) for n>0 with a(0)=1.
1, 1, 3, 12, 58, 325, 2060, 14514, 112170, 941128, 8502393, 82160481, 844532873, 9191329357, 105491177081, 1272418794619, 16080824798705, 212370154398094, 2923859710010527, 41877072960374478, 622763691600244335
Offset: 0
Keywords
Examples
a(3) = 5*(1) + 4*(1) + 1*(3) = 12; a(4) = 14*(1) + 14*(1) + 6*(3) + 1*(12) = 58; a(5) = 42*(1) + 48*(1) + 27*(3) + 8*(12) + 1*(58) = 325. Triangle A039598(n,k) = C(2*n+2,n-k)*(k+1)/(n+1) begins: 1; 2, 1; 5, 4, 1; 14, 14, 6, 1; 42, 48, 27, 8, 1; 132, 165, 110, 44, 10, 1; ... where g.f. of column k = G000108(x)^(2*k+2) and G000108(x) = (1 - sqrt(1-4*x))/(2x) is the Catalan function.
Links
- Vaclav Kotesovec, Table of n, a(n) for n = 0..500
Programs
Formula
a(n) = Sum_{k=0..n-1} a(k) * C(2*n,n-k-1)*(k+1)/n for n>0 with a(0)=1.
G.f. A(x) satisfies: A(x/(1+x)^2) = 1 + x*A(x); also, A(x*(1-x)) = 1 + [x/(1-x)]*A(x/(1-x)); also, A(x) = 1 + x*C(x)^2*A(x*C(x)^2) where C(x) = (1 - sqrt(1-4x))/(2x) is the Catalan function (A000108). - Paul D. Hanna, Aug 15 2007