A014535 Number of B-trees of order 3 with n leaves.
0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 8, 14, 23, 32, 43, 63, 97, 149, 224, 332, 489, 727, 1116, 1776, 2897, 4782, 7895, 12909, 20752, 32670, 50426, 76767, 116206, 176289, 269615, 416774, 650647, 1023035, 1614864, 2551783, 4028217, 6344749, 9966479, 15614300, 24407844
Offset: 0
Keywords
References
- Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6 Otter's tree enumeration constants, p. 311.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Lucia Di Vizio, Gwladys Fernandes, and Marni Mishna, Inhomogeneous order 1 iterative functional equations with applications to combinatorics, arXiv:2309.07680 [math.CO], 2023. See p. 3.
- P. Flajolet and A. Odlyzko, Singularity analysis of generating functions, SIAM J. Discrete Math., vol 3 (1990) pp. 216-240. See p. 20.
- P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 91
- A. M. Odlyzko, Periodic oscillations of coefficients of power series that satisfy functional equations, Advances in Mathematics, Volume 44, Issue 2, May 1982, pp. 180-205.
- F. Ruskey, Information on B-Trees
- Eric Weisstein's World of Mathematics, B-Tree.
- Index entries for sequences related to rooted trees
Crossrefs
Cf. A125295.
Programs
-
Maple
spec := [ B, {B=Union(Z, Subst(M, B)), M=Union(Prod(Z,Z),Prod(Z,Z,Z))} ]: seq(combstruct[count](spec, size=n), n=0..36); # Paul Zimmermann
-
Mathematica
terms = 45; A[] = 0; Do[A[x] = x + A[x^2 + x^3] + O[x]^terms // Normal, terms]; CoefficientList[A[x], x] (* Jean-François Alcover, Oct 23 2012, from g.f., updated Jan 10 2018 *) a[0] = 0; a[1] = 1; a[n_] := a[n] = Sum[Binomial[k, 3*k - n]*a[k], {k, Ceiling[n/3], Floor[n/2]}]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jul 29 2014 *)
-
PARI
a(n) = if(n, my(v=vector(n)); v[1]=1; for(i=2, n, v[i]=sum(k=ceil(i/3), i\2, binomial(k, 3*k - i)*v[k])); v[n], 0) \\ Jianing Song, Nov 02 2019
Formula
G.f. satisfies A(x) = x + A(x^2+x^3).
a(0) = 0, a(1) = 1, a(n) = Sum_{k=ceiling(n/3)..floor(n/2)} binomial(k, 3*k - n)*a(k) - Jean-François Alcover, Jul 29 2014, after Steven Finch.
Comments