cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A219208 Number of distinct products of all parts of all partitions of n into distinct divisors of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 4, 1, 1, 1, 1, 1, 7, 1, 1, 1, 4, 1, 3, 1, 1, 1, 1, 1, 10, 1, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 26, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 26, 1, 1, 1, 1, 1, 2, 1, 6, 1, 1, 1, 23, 1
Offset: 0

Views

Author

Alois P. Heinz, Nov 14 2012

Keywords

Comments

a(p) = 1 for p in A000040 (prime numbers).
a(n) = 1 for n in A006037 (weird numbers).
a(n) = 1 for n in A005100 (deficient numbers).
a(n) = 1 for n in A125493 (composite deficient numbers).
a(n) <= 2 for n in A000396 (perfect numbers).
a(n) >= 2 for n > 6 and n in A005835 (semiperfect numbers).

Examples

			a(0) = 1: the empty product.
a(p) = 1 for any prime p: [p]-> p.
a(6) = 1: {[1,2,3], [6]}-> 6.
a(12) = 3, because all 3 partitions of 12 into distinct divisors of 12 have different products: [1,2,3,6]-> 36, [2,4,6]-> 48, [12]-> 12. a(18) = 3: [1,2,6,9]-> 108, [3,6,9]-> 162, [18]-> 18.
a(20) = 2: [1,4,5,10]-> 200, [20]-> 20.
a(28) = 2: [1,2,4,7,14]-> 784, [28]-> 28.
a(36) = 7: [2,3,4,6,9,12]-> 15552, [2,3,4,9,18]-> 3888, [1,2,6,9,18]-> 1944, [3,6,9,18]-> 2916, {[1,2,3,12,18], [6,12,18]}-> 1296, [2,4,12,18]-> 1728, [36]-> 36.
a(84) = 23: 84, 16464, 28224, 49392, 65856, 74088, 84672, 86436, 98784, 127008, 148176, 190512, 254016, 444528, 592704, 889056, 1016064, 1185408, 1382976, 1778112, 2370816, 4148928, 7112448.
		

Crossrefs

Maximal products are in A219209.

Programs

  • Maple
    a:= proc(n) local b, l;
          l:= sort([numtheory[divisors](n)[]]);
          b:= proc(n, i) option remember; `if`(n=0, {1}, `if`(i<1, {},
                {b(n, i-1)[], `if`(l[i]>n, {}, map(x-> x*l[i],
                b(n-l[i], i-1)))[]}))
              end; forget(b);
          nops(b(n, nops(l)))
        end:
    seq(a(n), n=0..120);
  • Mathematica
    a[n_] := a[n] = Module[{b, l}, l = Divisors[n]; b[m_, i_] := b[m, i] = If[m == 0, {1}, If[i<1, {}, Union[b[m, i-1], If[l[[i]]>m, {}, (#*l[[i]]&) /@ b[m-l[[i]], i-1]]]]]; Length[b[n, Length[l]]]]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Feb 16 2017, translated from Maple *)

A191905 Composite deficient numbers k such that (product of proper divisors of k) mod (sum of proper divisors of k) is a prime number.

Original entry on oeis.org

4, 9, 10, 25, 33, 39, 49, 57, 91, 93, 98, 105, 111, 119, 121, 145, 155, 169, 183, 185, 187, 189, 201, 205, 209, 215, 225, 235, 237, 242, 245, 265, 289, 291, 299, 305, 327, 335, 351, 355, 361, 371, 403, 413, 415, 417, 425, 427, 437, 469, 471, 475, 485, 493, 497, 515, 527, 529, 535, 543, 549, 553
Offset: 1

Views

Author

Juri-Stepan Gerasimov, Jun 19 2011

Keywords

Crossrefs

Programs

  • Maple
    isA191905 := proc(n) if not isA125493(n) then false; else isprime( A191906(n)) ; end if; end proc:
    for n from 3 to 710 do if isA191905(n) then printf("%d,",n) ; end if; end do: # R. J. Mathar, Jun 27 2011
  • Mathematica
    fQ[n_]:=Module[{pd=Most[Divisors[n]]},!PerfectNumberQ[n]&&CompositeQ[n] && DivisorSigma[ 1,n]<2n&& PrimeQ[Mod[Times@@pd,Total[pd]]]] Select[Range[2,600],fQ] (* Harvey P. Dale, Jul 14 2024 *)

Extensions

Corrected by R. J. Mathar, Jun 27 2011
Showing 1-2 of 2 results.