A125510 Theta series of 4-dimensional lattice QQF.4.g.
1, 6, 6, 42, 6, 36, 42, 48, 6, 150, 36, 72, 42, 84, 48, 252, 6, 108, 150, 120, 36, 336, 72, 144, 42, 186, 84, 474, 48, 180, 252, 192, 6, 504, 108, 288, 150, 228, 120, 588, 36, 252, 336, 264, 72, 900, 144, 288, 42, 342, 186, 756, 84, 324, 474, 432, 48, 840, 180, 360, 252, 372
Offset: 0
Keywords
Examples
G.f. = 1 + 6*x + 6*x^2 + 42*x^3 + 6*x^4 + 36*x^5 + 42*x^6 + 48*x^7 + 6*x^8 + ... G.f. = 1 + 6*q^2 + 6*q^4 + 42*q^6 + 6*q^8 + 36*q^10 + 42*q^12 + 48*q^14 + 6*q^16 + ...
Links
- John Cannon, Table of n, a(n) for n = 0..5000
- David Broadhurst, Feynman integrals, L-series and Kloosterman moments, arXiv:1604.03057 [physics.gen-ph], 2016.
- G. Nebe and N. J. A. Sloane, Home page for this lattice
Programs
-
Magma
A := Basis( ModularForms( Gamma0(6), 2), 59); A[1] + 6*A[2] + 6*A[3]; /* Michael Somos, Feb 17 2017 */
-
Mathematica
a[n_] := 6*(DivisorSum[n, Mod[#, 2]*# &] + If[Mod[n, 3] != 0, 0, 3 * DivisorSum[n/3, Mod[#, 2]*# &]]); a[0]=1; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Dec 02 2015, adapted from PARI *) a[ n_] := If[ n < 1, Boole[n == 0], 6 Times @@ (Which[# < 3, 1, # == 3, 3^(#2 + 1) - 2, True, (#^(#2 + 1) - 1) / (# - 1)] & @@@ FactorInteger@n)]; (* Michael Somos, Feb 17 2017 *)
-
PARI
{a(n) = if( n<1, n==0, 6 * (sumdiv( n, d, (d%2) * d) + if( n%3, 0, 3 * sumdiv( n/3, d, (d%2) * d))))}; /* Michael Somos, Feb 10 2011 */
-
PARI
{et(n)=eta(q^n+O(q^(nt+1)));} {nt=5000;et16=et(1)*et(6);et23=et(2)*et(3); Eq105=(et16*et23)^2; Eq135=(et23^3/et16)^3+q*(et16^3/et23)^3; ans=Vec(Eq135/Eq105); for(n=0,nt,print(n" "ans[n+1]));} /* David Broadhurst, Apr 12 2016 */
-
PARI
{a(n) = if( n<1, n==0, my(A, p, e); A = factor(n); 6 * prod(k=1, matsize(A)[1], [p, e] = A[k, ]; if( p==2, 1, p==3, 3^(e+1) - 2, (p^(e+1) - 1) / (p - 1))))}; /* Michael Somos, Feb 17 2017 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A)^3 + 9*x*eta(x^9 + A)^3) * (eta(x^2 + A)^3 + 9*x^2*eta(x^18 + A)^3) / (eta(x^3 + A) * eta(x^6 + A)), n))}; /* Michael Somos, Feb 17 2017 */
-
PARI
{a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( ((eta(x + A) * eta(x^2 + A))^4 + 9*x* (eta(x^3 + A) * eta(x^6 + A))^4) / (eta(x + A) * eta(x^2 + A) * eta(x^3 + A) * eta(x^6 + A)), n))}; /* Michael Somos, Feb 17 2017 */
Formula
Expansion of a(x) * a(x^2) in powers of x where a() is a cubic AGM theta function. - Michael Somos, Feb 10 2011
G.f.: 1 + 6 * (Sum_{k>0} F(x^k) + 3 * F(x^(3*k))) where F(x) = (x + x^3) / (1 - x^2)^2. - Michael Somos, Feb 10 2011
G.f.: 1 + 6 * (Sum_{k>0} k * F(x^k) + (3*k) * F(x^(3*k))) where F(x) = x / (1 + x). - Michael Somos, Feb 10 2011
a(n) = 6*b(n) where b() is multiplicative with b(2^e) = 1, b(3^e) = 3^(e+1) - 2, b(p^e) = (p^(e+1) - 1) / (p-1) if p>3. - Michael Somos, Feb 17 2017
Expansion of ((eta(q) * eta(q^2))^4 + 9 * (eta(q^3) * eta(q^6))^4) / (eta(q) * eta(q^2) * eta(q^3) * eta(q^6)) in powers of q. - Michael Somos, Feb 17 2017
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 6 (t/i)^2 f(t) where q = exp(2 Pi i t). - Michael Somos, Feb 17 2017
G.f. A(x) = (F(x) + 3*F(x^3)) / 4 where F() = g.f. of A004011. - Michael Somos, Feb 17 2017
a(n) = A282544(2*n). - Michael Somos, Feb 18 2017
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / 3. - Vaclav Kotesovec, Dec 29 2023
Comments