A125553 Triangle read by rows: T(n,k) = S1(n,k)*2^k, where S1(n,k) is an unsigned Stirling number of the first kind (cf. A008275) (n >= 1, 1 <= k <= n).
2, 2, 4, 4, 12, 8, 12, 44, 48, 16, 48, 200, 280, 160, 32, 240, 1096, 1800, 1360, 480, 64, 1440, 7056, 12992, 11760, 5600, 1344, 128, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512
Offset: 1
Examples
Triangle begins: 2 2 4 4 12 8 12 44 48 16 48 200 280 160 32 Triangle [0,1,1,2,2,3,3,...] DELTA [2,0,2,0,2,0,2,...], for 0<=k<=n, begins: 1; 0, 2; 0, 2, 4; 0, 4, 12, 8; 0, 12, 44, 48, 16; 0, 48, 200, 280, 160, 32;
Links
- Steven Finch, Rounds, Color, Parity, Squares, arXiv:2111.14487 [math.CO], 2021.
Programs
-
Maple
with(combinat): T:=(n,k)->2^k*abs(stirling1(n,k)): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 05 2007 A008275 := proc(n,k) if n = 0 and k = 0 then 1 ; elif n = 0 or k = 0 then 0 ; else A008275(n-1,k-1)-(n-1)*A008275(n-1,k) ; fi ; end ; A125553 := proc(n,k) abs(A008275(n,k)*2^k) ; end ; nmax := 10 ; for n from 1 to nmax do for k from 1 to n do printf("%d, ",A125553(n,k)) ; od ; od ; # R. J. Mathar, Jan 12 2007 # The function BellMatrix is defined in A264428. # Adds (1,0,0,0, ..) as column 0. BellMatrix(n -> 2*(n+1)!/(n+1), 9); # Peter Luschny, Jan 27 2016
-
Mathematica
Flatten[Table[Table[2^k Abs[StirlingS1[n,k]], {k,1,n}], {n,1,8}]] (* Geoffrey Critzer, Dec 14 2011 *) BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]]; B = BellMatrix[Function[n, 2 (n + 1)!/(n + 1)], rows = 12]; Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)
Formula
E.g.f.: 1/(1-x)^(2y). - Geoffrey Critzer, Dec 14 2011
Extensions
More terms from R. J. Mathar, Jan 12 2007
Comments