cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125553 Triangle read by rows: T(n,k) = S1(n,k)*2^k, where S1(n,k) is an unsigned Stirling number of the first kind (cf. A008275) (n >= 1, 1 <= k <= n).

Original entry on oeis.org

2, 2, 4, 4, 12, 8, 12, 44, 48, 16, 48, 200, 280, 160, 32, 240, 1096, 1800, 1360, 480, 64, 1440, 7056, 12992, 11760, 5600, 1344, 128, 10080, 52272, 105056, 108304, 62720, 20608, 3584, 256, 80640, 438336, 944992, 1076544, 718368, 290304, 69888, 9216, 512
Offset: 1

Views

Author

N. J. A. Sloane, Jan 04 2007

Keywords

Comments

Row sums are factorial numbers.
T(n,k) is the number of cycle-colored n-permutations possessing exactly k cycles; two colors are available. - Steven Finch, Nov 19 2021
Subtriangle (for 1<=k<=n) of triangle given by [0,1,1,2,2,3,3,4,4,5,5,...] DELTA [2,0,2,0,2,0,2,0,2,0,...] where DELTA is the operator defined in A084938. - Philippe Deléham, Jan 05 2007
Also the Bell transform of the sequence "a(n) = 2*(n+1)!/(n+1)". For the definition of the Bell transform see A264428. - Peter Luschny, Jan 27 2016

Examples

			Triangle begins:
  2
  2 4
  4 12 8
  12 44 48 16
  48 200 280 160 32
Triangle [0,1,1,2,2,3,3,...] DELTA [2,0,2,0,2,0,2,...], for 0<=k<=n, begins:
  1;
  0, 2;
  0, 2, 4;
  0, 4, 12, 8;
  0, 12, 44, 48, 16;
  0, 48, 200, 280, 160, 32;
		

Crossrefs

Programs

  • Maple
    with(combinat): T:=(n,k)->2^k*abs(stirling1(n,k)): for n from 1 to 10 do seq(T(n,k),k=1..n) od; # yields sequence in triangular form - Emeric Deutsch, Jan 05 2007
    A008275 := proc(n,k) if n = 0 and k = 0 then 1 ; elif n = 0 or k = 0 then 0 ; else A008275(n-1,k-1)-(n-1)*A008275(n-1,k) ; fi ; end ; A125553 := proc(n,k) abs(A008275(n,k)*2^k) ; end ; nmax := 10 ; for n from 1 to nmax do for k from 1 to n do printf("%d, ",A125553(n,k)) ; od ; od ; # R. J. Mathar, Jan 12 2007
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> 2*(n+1)!/(n+1), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Flatten[Table[Table[2^k Abs[StirlingS1[n,k]], {k,1,n}], {n,1,8}]] (* Geoffrey Critzer, Dec 14 2011 *)
    BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    B = BellMatrix[Function[n, 2 (n + 1)!/(n + 1)], rows = 12];
    Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 28 2018, after Peter Luschny *)

Formula

E.g.f.: 1/(1-x)^(2y). - Geoffrey Critzer, Dec 14 2011

Extensions

More terms from R. J. Mathar, Jan 12 2007