cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125558 Central column of triangle A090181.

Original entry on oeis.org

1, 1, 6, 50, 490, 5292, 60984, 736164, 9202050, 118195220, 1551580888, 20734762776, 281248448936, 3863302870000, 53644719852000, 751920156592200, 10626401036545650, 151269944167296900, 2167317913508055000
Offset: 0

Views

Author

Philippe Deléham, Jan 01 2007, Oct 11 2007

Keywords

Comments

[1,6,50,490,5292,...] is a column in triangle of Narayana numbers A001263.
Number of Dyck 2n-paths with exactly n peaks. - Peter Luschny, May 10 2014
For n > 0, number of pairs of non-intersecting lattice paths with steps (1,0), (0,1), where one path goes from (0,0) to (n,n) and the other from (1,0) to (n+1,n). The proof is by switching intersecting path pairs after their first intersection, giving a(n) = binomial(2*n,n)^2 - binomial(2*n+1,n) * binomial(2*n-1,n). - Jeremy Tan, Apr 12 2021

Crossrefs

Equals A000888(n)/2 for n>0.
Cf. A090181.

Programs

  • Maple
    seq(ceil(1/2*(n+1)*((binomial(2*n,n)/(1+n))^2)), n=0..18); # Zerinvary Lajos, Jun 18 2007
  • Mathematica
    CoefficientList[
    Series[1 + (HypergeometricPFQ[{1/2, 1/2}, {2}, 16 x] - 1)/(2), {x, 0,
        20}], x]
    Join[{1},Table[CatalanNumber[n]^2 (n+1)/2,{n,20}]] (* Harvey P. Dale, Oct 19 2011 *)

Formula

a(0)=1, a(n) = Catalan(n)^2*(n+1)/2 = A000108(n)^2*(n+1)/2 for n>0.
a(n) = A090181(2*n, n).
G.f.: 1 + x*3F2( 1, 3/2, 3/2; 2, 3;16 x) = 1 + ( 2F1( 1/2, 1/2; 2;16*x) - 1)/2. - Olivier Gérard, Feb 16 2011
D-finite with recurrence n*(n+1)*a(n) -4*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Feb 08 2021
a(n) = binomial(2*n,n)^2 - binomial(2*n+1,n) * binomial(2*n-1,n). - Jeremy Tan, Apr 12 2021