A125558 Central column of triangle A090181.
1, 1, 6, 50, 490, 5292, 60984, 736164, 9202050, 118195220, 1551580888, 20734762776, 281248448936, 3863302870000, 53644719852000, 751920156592200, 10626401036545650, 151269944167296900, 2167317913508055000
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..800
Programs
-
Maple
seq(ceil(1/2*(n+1)*((binomial(2*n,n)/(1+n))^2)), n=0..18); # Zerinvary Lajos, Jun 18 2007
-
Mathematica
CoefficientList[ Series[1 + (HypergeometricPFQ[{1/2, 1/2}, {2}, 16 x] - 1)/(2), {x, 0, 20}], x] Join[{1},Table[CatalanNumber[n]^2 (n+1)/2,{n,20}]] (* Harvey P. Dale, Oct 19 2011 *)
Formula
a(0)=1, a(n) = Catalan(n)^2*(n+1)/2 = A000108(n)^2*(n+1)/2 for n>0.
a(n) = A090181(2*n, n).
G.f.: 1 + x*3F2( 1, 3/2, 3/2; 2, 3;16 x) = 1 + ( 2F1( 1/2, 1/2; 2;16*x) - 1)/2. - Olivier Gérard, Feb 16 2011
D-finite with recurrence n*(n+1)*a(n) -4*(2*n-1)^2*a(n-1)=0. - R. J. Mathar, Feb 08 2021
a(n) = binomial(2*n,n)^2 - binomial(2*n+1,n) * binomial(2*n-1,n). - Jeremy Tan, Apr 12 2021
Comments