cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A197737 Decimal expansion of x<0 having x^2+x=cos(x).

Original entry on oeis.org

1, 2, 5, 1, 1, 5, 1, 8, 3, 5, 2, 2, 0, 7, 6, 4, 8, 1, 1, 5, 9, 2, 8, 7, 0, 0, 6, 8, 7, 8, 8, 1, 6, 1, 8, 5, 9, 9, 4, 5, 3, 5, 6, 1, 0, 8, 5, 8, 8, 9, 6, 8, 6, 3, 6, 2, 0, 1, 7, 8, 2, 8, 1, 2, 1, 0, 3, 6, 0, 1, 9, 1, 8, 2, 3, 8, 2, 1, 0, 9, 1, 0, 4, 1, 1, 2, 7, 3, 5, 7, 6, 5, 9, 4, 8, 6, 8, 4, 2
Offset: 1

Views

Author

Clark Kimberling, Oct 20 2011

Keywords

Comments

For many choices of a,b,c, there are exactly two numbers x having a*x^2+b*x=cos(x).
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c.... x
1.... 0.... 1.... A125578
1.... 0.... 2.... A197806
1.... 0.... 3.... A197807
1.... 0.... 4.... A197808
1.... 1.... 1.... A197737, A197738
1.... 1.... 2.... A197809, A197810
1.... 1.... 3.... A197811, A197812
1.... 1.... 4.... A197813, A197814
1... -2... -1.... A197815, A197820
1... -3... -1.... A197825, A197831
1... -4... -1.... A197839, A197840
1.... 2.... 1.... A197841, A197842
1.... 2.... 2.... A197843, A197844
1.... 2.... 3.... A197845, A197846
1.... 2.... 4.... A197847, A197848
1... -2... -2.... A197849, A197850
1... -3... -2.... A198098, A198099
1... -4... -2.... A198100, A198101
1.... 3.... 1.... A198102, A198103
1.... 3.... 2.... A198104, A198105
1.... 3.... 3.... A198106, A198107
1.... 3.... 4.... A198108, A198109
1... -2... -3.... A198140, A198141
1... -3... -3.... A198142, A198143
1... -4... -3.... A198144, A198145
2.... 0.... 1.... A198110
2.... 0.... 3.... A198111
2.... 1.... 1.... A198112, A198113
2.... 1.... 2.... A198114, A198115
2.... 1.... 3.... A198116, A198117
2.... 1.... 4.... A198118, A198119
2.... 1... -1.... A198120, A198121
2... -4... -1.... A198122, A198123
2.... 2.... 1.... A198124, A198125
2.... 2.... 3.... A198126, A198127
2.... 3.... 1.... A198128, A198129
2.... 3.... 2.... A198130, A198131
2.... 3.... 3.... A198132, A198133
2.... 3.... 4.... A198134, A198135
2... -4... -3.... A198136, A198137
3.... 0.... 1.... A198211
3.... 0.... 2.... A198212
3.... 0.... 4.... A198213
3.... 1.... 1.... A198214, A198215
3.... 1.... 2.... A198216, A198217
3.... 1.... 3.... A198218, A198219
3.... 1.... 4.... A198220, A198221
3.... 2.... 1.... A198222, A198223
3.... 2.... 2.... A198224, A198225
3.... 2.... 3.... A198226, A198227
3.... 2.... 4.... A198228, A198229
3.... 3.... 1.... A198230, A198231
3.... 3.... 2.... A198232, A198233
3.... 3.... 4.... A198234, A198235
3.... 4.... 1.... A198236, A198237
3.... 4.... 2.... A198238, A198239
3.... 4.... 3.... A198240, A198241
3.... 4.... 4.... A198138, A198139
3... -4... -1.... A198345, A198346
4.... 0.... 1.... A198347
4.... 0.... 3.... A198348
4.... 1.... 1.... A198349, A198350
4.... 1.... 2.... A198351, A198352
4.... 1.... 3.... A198353, A198354
4.... 1.... 4.... A198355, A198356
4.... 2.... 1.... A198357, A198358
4.... 2.... 3.... A198359, A198360
4.... 3.... 1.... A198361, A198362
4.... 3.... 2.... A198363, A198364
4.... 3.... 3.... A198365, A198366
4.... 3.... 4.... A198367, A198368
4.... 4.... 1.... A198369, A198370
4.... 4.... 3.... A198371, A198372
4... -4... -1.... A198373, A198374
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A197737, take f(x,u,v)=x^2+u*x-v*cos(x) and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			negative: -1.25115183522076481159287006878816185994...
positive:  0.55000934992726156666495361947172926116...
		

Crossrefs

Cf. A197738.

Programs

  • Mathematica
    (* Program 1:  A197738 *)
    a = 1; b = 1; c = 1;
    f[x_] := a*x^2 + b*x; g[x_] := c*Cos[x]
    Plot[{f[x], g[x]}, {x, -2, 1}]
    r1 = x /. FindRoot[f[x] == g[x], {x, -1.26, -1.25}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197737 *)
    r1 = x /. FindRoot[f[x] == g[x], {x, .55, .551}, WorkingPrecision -> 110]
    RealDigits[r1] (* A197738 *)
    (* Program 2: implicit surface of x^2+u*x=v*cos(x) *)
    f[{x_, u_, v_}] := x^2 + u*x - v*Cos[x];
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 1}]}, {u, 0, 20}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A197737 *)
  • PARI
    A197737_vec(N=150)={localprec(N+10); digits(solve(x=-1.5,-1,x^2+x-cos(x))\.1^N)} \\ M. F. Hasler, Aug 05 2021

A198755 Decimal expansion of x>0 satisfying x^2+cos(x)=2.

Original entry on oeis.org

1, 3, 2, 5, 6, 2, 2, 5, 1, 8, 1, 4, 7, 5, 3, 6, 6, 2, 3, 4, 8, 3, 2, 2, 9, 0, 2, 9, 3, 8, 7, 9, 8, 7, 4, 4, 3, 3, 0, 4, 5, 4, 6, 7, 2, 5, 6, 5, 7, 6, 6, 4, 9, 5, 2, 6, 2, 7, 4, 0, 1, 8, 5, 3, 2, 0, 0, 8, 9, 5, 0, 6, 1, 6, 5, 9, 3, 0, 2, 4, 6, 5, 0, 3, 4, 1, 1, 0, 9, 7, 5, 9, 7, 7, 5, 7, 5, 6, 7
Offset: 1

Views

Author

Clark Kimberling, Oct 30 2011

Keywords

Comments

For many choices of a,b,c, there is a unique x>0 satisfying a*x^2+b*cos(x)=c.
Guide to related sequences, with graphs included in Mathematica programs:
a.... b.... c..... x
1.... 1.... 2..... A198755
1.... 1.... 3..... A198756
1.... 1.... 4..... A198757
1.... 2.... 3..... A198758
1.... 2.... 4..... A198811
1.... 3.... 3..... A198812
1.... 3.... 4..... A198813
1.... 4.... 3..... A198814
1.... 4.... 4..... A198815
1.... 1.... 0..... A125578
1... -1.... 1..... A198816
1... -1.... 2..... A198817
1... -1.... 3..... A198818
1... -1.... 4..... A198819
1... -2.... 1..... A198821
1... -2.... 2..... A198822
1... -2.... 3..... A198823
1... -2.... 4..... A198824
1... -2... -1..... A198825
1... -3.... 0..... A197807
1... -3.... 1..... A198826
1... -3.... 2..... A198828
1... -3.... 3..... A198829
1... -3.... 4..... A198830
1... -3... -1..... A198835
1... -3... -2..... A198836
1... -4.... 0..... A197808
1... -4.... 1..... A198838
1... -4.... 2..... A198839
1... -4.... 3..... A198840
1... -4.... 4..... A198841
1... -4... -1..... A198842
1... -4... -2..... A198843
1... -4... -3..... A198844
2.... 0.... 1..... A010503
2.... 0.... 3..... A115754
2.... 1.... 2..... A198820
2.... 1.... 3..... A198827
2.... 1.... 4..... A198837
2.... 2.... 3..... A198869
2.... 3.... 4..... A198870
2... -1.... 1..... A198871
2... -1.... 2..... A198872
2... -1.... 3..... A198873
2... -1.... 4..... A198874
2... -2... -1..... A198875
2... -2.... 3..... A198876
2... -3... -2..... A198877
2... -3... -1..... A198878
2... -3.... 1..... A198879
2... -3.... 2..... A198880
2... -3.... 3..... A198881
2... -3.... 4..... A198882
2... -4... -3..... A198883
2... -4... -1..... A198884
2... -4.... 1..... A198885
2... -4.... 3..... A198886
3.... 0.... 1..... A020760
3.... 1.... 2..... A198868
3.... 1.... 3..... A198917
3.... 1.... 4..... A198918
3.... 2.... 3..... A198919
3.... 2.... 4..... A198920
3.... 3.... 4..... A198921
3... -1.... 1..... A198922
3... -1.... 2..... A198924
3... -1.... 3..... A198925
3... -1.... 4..... A198926
3... -2... -1..... A198927
3... -2.... 1..... A198928
3... -2.... 2..... A198929
3... -2.... 3..... A198930
3... -2.... 4..... A198931
3... -3... -1..... A198932
3... -3.... 1..... A198933
3... -3.... 2..... A198934
3... -3.... 4..... A198935
3... -4... -3..... A198936
3... -4... -2..... A198937
3... -4... -1..... A198938
3... -4.... 1..... A198939
3... -4.... 2..... A198940
3... -4.... 3..... A198941
3... -4.... 4..... A198942
4.... 1.... 2..... A198923
4.... 1.... 3..... A198983
4.... 1.... 4..... A198984
4.... 2.... 3..... A198985
4.... 3.... 4..... A198986
4... -1.... 1..... A198987
4... -1.... 2..... A198988
4... -1.... 3..... A198989
4... -1.... 4..... A198990
4... -2... -1..... A198991
4... -2.... 1..... A198992
4... -2... -3..... A198993
4... -3... -2..... A198994
4... -3... -1..... A198995
4... -2.... 1..... A198996
4... -3.... 2..... A198997
4... -3.... 3..... A198998
4... -3.... 4..... A198999
4... -4... -3..... A199000
4... -4... -1..... A199001
4... -4.... 1..... A199002
4... -4.... 3..... A199003
Suppose that f(x,u,v) is a function of three real variables and that g(u,v) is a function defined implicitly by f(g(u,v),u,v)=0. We call the graph of z=g(u,v) an implicit surface of f.
For an example related to A198755, take f(x,u,v)=x^2+u*cos(x)-v and g(u,v) = a nonzero solution x of f(x,u,v)=0. If there is more than one nonzero solution, care must be taken to ensure that the resulting function g(u,v) is single-valued and continuous. A portion of an implicit surface is plotted by Program 2 in the Mathematica section.

Examples

			1.32562251814753662348322902938798744330...
		

Crossrefs

Programs

  • Mathematica
    (* Program 1:  A198655 *)
    a = 1; b = 1; c = 2;
    f[x_] := a*x^2 + b*Cos[x]; g[x_] := c
    Plot[{f[x], g[x]}, {x, -2, 2}, {AxesOrigin -> {0, 0}}]
    r = x /. FindRoot[f[x] == g[x], {x, 1.32, 1.33}, WorkingPrecision -> 110]
    RealDigits[r] (* A198755 *)
    (* Program 2: implicit surface of x^2+u*cos(x)=v *)
    f[{x_, u_, v_}] := x^2 + u*Cos[x] - v;
    t = Table[{u, v, x /. FindRoot[f[{x, u, v}] == 0, {x, 0, 3}]}, {u, -5, 4}, {v, u, 20}];
    ListPlot3D[Flatten[t, 1]]  (* for A198755 *)

A208672 a(n) = floor[1/(1-f(n))], where f(n) is the least nonnegative number such that f(n)^n = cos(f(n)).

Original entry on oeis.org

1, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 23, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 53, 54, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 89, 90, 92
Offset: 0

Views

Author

Ben Branman, Feb 29 2012

Keywords

Comments

For n=0, the only possible solution is f(0)=0, which yields a(0)=1.
f(n)->1 as n->infinity.
a(n) ~ -n/log(cos(1))
f(1) = the Dottie number 0.73908513321516 = A003957
f(2) is A125578
f(3) is A125579
a(n) is defined for negative values of n as well.
If we let a(n)=floor[c(n)], c(n)=1/(1-f(n)), then f(n)^n=cos(f(n)) <=> 1-1/c(n) = cos(1-1/c(n))^(1/n) = exp(log(cos(1-1/c(n)))/n) = exp(log(cos(1)+O(1/c(n)^2))/n) = 1+log(cos(1))/n+o(1/n), assuming c(n) ~ c*n, which then yields c = -1/log(cos(1)). - M. F. Hasler, Mar 05 2012

Examples

			For n=4, the only positive solution to x^4=cos(x) is x=0.890553, so a(4)=floor(1/(1-.890553)) = floor(9.13682) = 9, so a(4)=9.
		

Crossrefs

Programs

  • Mathematica
    f[n_] := 1/(1 - FindRoot[x^n == Cos[x], {x, 0, 1}, WorkingPrecision -> 1000][[1,2]]); Table[Floor[f[n]], {n, 0, 100}]
  • PARI
    a(n)=1\(1-solve(x=0,1,x^n-cos(x))) \\ Charles R Greathouse IV, Mar 04 2012
Showing 1-3 of 3 results.