A125587
Call an n X n matrix robust if the top left i X i submatrix is invertible for all i = 1..n. Sequence gives number of n X n robust real {0,1}-matrices.
Original entry on oeis.org
1, 4, 68, 5008, 1603232, 2224232640
Offset: 1
a(2) = 4 from:
10 10 11 11
01 11 01 10
A127182
Number of distinct characteristic polynomials of n X n real robust {0,1}-matrices.
Original entry on oeis.org
1, 2, 12, 156, 5612
Offset: 1
a(2)=2 because there are 4 binary robust 2 X 2 matrices, but only two distinct characteristic polynomials, namely y^2-y-1 and y^2-2y+1.
a(3)=12 because there are 12 different characteristic polynomials: -1-3y-y^2+y^3, 1-2y-y^2+y^3, 1+y-3y^2+y^3, -2+3y-3y^2+y^3, -1-2y-y^2+y^3, -1-y-y^2+y^3, -1+y-2y^2+y^3, 2-y-2y^2+y^3, -1+2y-3y^2+y^3, 1-y-2y^2+y^3, 1- 2y^2+y^3, -1+3y-3y^2+y^3.
-
mats[1] = {{{1}}}; mats[n_Integer?Positive] := mats[n] = Module[{newrows = Rest[Tuples[{0, 1}, {n}]], mp1 = Flatten[Function[k, Thread[(Append[ #1, #2]&)[ #1, k]]& /@ mats[n - 1]] /@ Tuples[{0, 1}, {n - 1}], 1]}, Flatten[MapThread[Function[{m, nl}, Append[m, # ]& /@ nl], {mp1, Pick[newrows, # =!= 0& /@ # ]& /@ (First /@ Dot[NullSpace /@ mp1, Transpose[newrows]])}], 1]] A127182[n_]=Length[Union[CharacteristicPolynomial[mats[n]]]]
A127186
Number of nonsingular n X n real {0,1}-matrices such that all upper left i X i submatrices are singular for i = 1..n-1.
Original entry on oeis.org
1, 2, 40, 3936, 1695296
Offset: 1
-
check[x_,n_] := Catch@ Block[{m = Partition[ IntegerDigits[x, 2, n^2], n]}, Do[ If[ Det[m[[1 ;; k, 1 ;; k]]] != 0, Throw@ False], {k, n-1}]; Det[m] != 0]; a[n_] := Length@ Parallelize@ Select[ Range[0, 2^(n^2) - 1], check[#, n] &]; Array[a, 4] (* Giovanni Resta, Jul 23 2025 *)
A127183
Number of distinct irreducible characteristic polynomials of n X n real robust {0,1}-matrices.
Original entry on oeis.org
1, 1, 6, 88, 3719
Offset: 1
a(3)=6 because there are 6 different irreducible characteristic polynomials of 3 x 3 binary robust matrices: -1-2y-y^2+y^3,-1-2y-y^2+y^3, -1-y-y^2+y^3, -1+y-2y^2+y^3, -1+2y-3y^2+y^3, 1-y-2y^2+y^3.
A127184
Number of distinct reducible characteristic polynomials of n X n real robust {0,1}-matrices.
Original entry on oeis.org
0, 1, 6, 68, 1893
Offset: 1
A127706
Number of nonsingular n X n real {0,1}-matrices n X n which are not robust (cf. A125587) nor in A127186.
Original entry on oeis.org
0, 0, 66, 13616, 9215792
Offset: 1
Showing 1-6 of 6 results.
Comments