cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125604 Minimum of the largest prime factors of a number and its two neighbors.

Original entry on oeis.org

2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 5, 2, 2, 2, 3, 3, 5, 5, 7, 3, 3, 3, 3, 3, 3, 5, 5, 2, 2, 2, 7, 3, 3, 3, 13, 5, 5, 5, 7, 7, 5, 5, 5, 3, 3, 3, 5, 5, 13, 3, 3, 3, 7, 7, 19, 5, 5, 5, 7, 2, 2, 2, 11, 11, 17, 7, 7, 3, 3, 3, 5, 5, 5, 11, 11, 5, 3, 3, 3, 7, 7, 7, 17, 11, 11, 5, 5, 5, 13, 23, 19, 3, 3, 3, 7, 5, 5
Offset: 3

Views

Author

Carlos Alves, Nov 27 2006

Keywords

Examples

			a(93) = min{lpf(92),lpf(93),lpf(94)} = min{23,31,47} = 23.
		

Crossrefs

Programs

  • Maple
    LPF:= map(t -> max(numtheory:-factorset(t)), [$2..101]):
    [seq](min(LPF[i..i+2]),i=1..nops(LPF)-2); # Robert Israel, Jun 16 2025
  • Mathematica
    LPF = FactorInteger[ # ][[ -1, 1]] &; Map[Min[{LPF[ # - 1], LPF[ # ], LPF[ # + 1]}] &, Range[3, 200]]
    Min/@Partition[Table[FactorInteger[n][[-1,1]],{n,110}],3,1] (* Harvey P. Dale, May 25 2015 *)
  • PARI
    a(n) = my(lpf(k)=vecmax(factor(k)[, 1])); vecmin([lpf(n-1), lpf(n), lpf(n+1)]); \\ Ruud H.G. van Tol, Aug 15 2024
    
  • Python
    from sympy import primefactors
    def a(n): return min(map(lambda n: primefactors(n)[-1], range(n-1,n+2))) # David Radcliffe, Jun 16 2025

Formula

a(n) = min{lpf(n-1),lpf(n),lpf(n+1)}, where lpf is the largest prime factor: lpf(k) = A006530(k).