A125604 Minimum of the largest prime factors of a number and its two neighbors.
2, 2, 2, 3, 2, 2, 2, 3, 3, 3, 3, 5, 2, 2, 2, 3, 3, 5, 5, 7, 3, 3, 3, 3, 3, 3, 5, 5, 2, 2, 2, 7, 3, 3, 3, 13, 5, 5, 5, 7, 7, 5, 5, 5, 3, 3, 3, 5, 5, 13, 3, 3, 3, 7, 7, 19, 5, 5, 5, 7, 2, 2, 2, 11, 11, 17, 7, 7, 3, 3, 3, 5, 5, 5, 11, 11, 5, 3, 3, 3, 7, 7, 7, 17, 11, 11, 5, 5, 5, 13, 23, 19, 3, 3, 3, 7, 5, 5
Offset: 3
Examples
a(93) = min{lpf(92),lpf(93),lpf(94)} = min{23,31,47} = 23.
Links
- Robert Israel, Table of n, a(n) for n = 3..10000
Programs
-
Maple
LPF:= map(t -> max(numtheory:-factorset(t)), [$2..101]): [seq](min(LPF[i..i+2]),i=1..nops(LPF)-2); # Robert Israel, Jun 16 2025
-
Mathematica
LPF = FactorInteger[ # ][[ -1, 1]] &; Map[Min[{LPF[ # - 1], LPF[ # ], LPF[ # + 1]}] &, Range[3, 200]] Min/@Partition[Table[FactorInteger[n][[-1,1]],{n,110}],3,1] (* Harvey P. Dale, May 25 2015 *)
-
PARI
a(n) = my(lpf(k)=vecmax(factor(k)[, 1])); vecmin([lpf(n-1), lpf(n), lpf(n+1)]); \\ Ruud H.G. van Tol, Aug 15 2024
-
Python
from sympy import primefactors def a(n): return min(map(lambda n: primefactors(n)[-1], range(n-1,n+2))) # David Radcliffe, Jun 16 2025
Formula
a(n) = min{lpf(n-1),lpf(n),lpf(n+1)}, where lpf is the largest prime factor: lpf(k) = A006530(k).