A125634 Smallest prime p such that 19^n divides p^18 - 1.
2, 127, 2819, 2819, 2342959, 2342959, 47579927, 3620189879, 513127081109, 8388044818849, 77460384757423, 2649283656602003, 252317900773542353, 2467410166021233673, 50407811312994280933, 179869204428830533411
Offset: 1
Links
- W. Keller and J. Richstein Fermat quotients that are divisible by p.
Crossrefs
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125635 = Smallest prime p such that 257^n divides p^256 - 1.
Programs
-
PARI
\\ See A125609 - Martin Fuller, Jan 11 2007
Extensions
More terms from Martin Fuller, Jan 11 2007