A125635 Smallest prime p such that 257^n divides p^256 - 1.
2, 1993, 134857, 716192579, 68539500613, 101479854517477, 711236716682257, 1646895113182602793, 783453821802171722617, 91545091731109499684503, 5225628509593228805996529, 1808125915932987167909775139
Offset: 1
Links
- W. Keller and J. Richstein Fermat quotients that are divisible by p.
Crossrefs
Cf. A125609 = Smallest prime p such that 3^n divides p^2 - 1. Cf. A125610 = Smallest prime p such that 5^n divides p^4 - 1. Cf. A125611 = Smallest prime p such that 7^n divides p^6 - 1. Cf. A125612 = Smallest prime p such that 11^n divides p^10 - 1. Cf. A125632 = Smallest prime p such that 13^n divides p^12 - 1. Cf. A125633 = Smallest prime p such that 17^n divides p^16 - 1. Cf. A125634 = Smallest prime p such that 19^n divides p^18 - 1.
Programs
-
PARI
See A125609
Extensions
More terms from Martin Fuller, Jan 11 2007