A125645 Smallest odd prime base q such that p^4 divides q^(p-1) - 1, where p = prime(n).
17, 163, 443, 3449, 45989, 239, 15541, 2819, 60793, 78017, 690143, 398023, 1977343, 574081, 1513367, 4388179, 3198427, 8065789, 3246107, 1353383, 5934307, 15631613, 2864371, 14754769, 15012733, 1358891, 32414783, 119551, 21860063, 11281097
Offset: 1
Keywords
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
- W. Keller and J. Richstein Fermat quotients that are divisible by p.
Crossrefs
Programs
-
Maple
f:= proc(n) local p, r, S,i,s,t; uses numtheory; p:= ithprime(n); r:= primroot(p^4); S:= sort([seq(r &^ (i*p^3) mod p^4, i=0..p-2)]); for i from 0 do for s in S do t:= i*p^4+s; if t::odd and isprime(t) then return t fi od od end proc: f(1):= 1: map(f, [$1..100]); # Robert Israel, Feb 12 2017
-
PARI
{ a(n) = local(p,x,y); if(n==1,return(17)); p=prime(n); x=znprimroot(p^4)^(p^3); vecsort( vector(p-1,i, y=lift(x^i);while(!isprime(y),y+=p^4);y ) )[1] } \\ Max Alekseyev, May 30 2007
Extensions
More terms from Max Alekseyev, May 30 2007