A125670 Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 1. See the paper by Hendrickson and Parks for details.
1, 2, 9, 26, 87, 257, 787, 2322, 6891, 20160, 58939, 171203, 496294, 1433558, 4132744, 11886827, 34133563, 97856500, 280172582, 801174478, 2288600128, 6531205571, 18622839635, 53059229091, 151067980960, 429840337630, 1222335365450, 3474107883033, 9869276762717
Offset: 5
Keywords
Examples
If n=5 then the number of bicyclics when 'alpha' = one is 1. If n=6 then the number of bicyclics when 'alpha' = one is 2. If n=7 then the number of bicyclics when 'alpha' = one is 9. If n=8 then the number of bicyclics when 'alpha' = one is 26. From _Andrew Howroyd_, May 24 2018: (Start) Case n = 6: the two cases are a 3-cycle joined to a 4-cycle and a 3-cycle joined to another 3-cycle with a pendant edge. o---o-----o o---o---o \ / \ | \ / \ / o o---o o o---o (End)
References
- James B. Hendrickson and Camden A. Parks, "Generation and Enumeration of Carbon Skeletons", J. Chem. Inf. Comput. Sci., vol. 31 (1991), pp. 101-107. See Table VII column 3 on page 104.
Links
- Andrew Howroyd, Table of n, a(n) for n = 5..200
Programs
-
PARI
\\ here G is A000598 as series G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g} CycleIndex(n)={(sum(i=1, (n-1)\2-1, sum(j=1, (n-1)\2-i, (j1^(2*(i+j)) + 2*j1^(2*i)*j2^j + j2^(i+j))*(1 + j1)^2)) + sum(k=1, (n-1)\4, 2*(j2^(2*k) + j4^k)*(1 + j2)))/8} seq(n)={my(t=G(n)); t=x*(t^2+subst(t, x, x^2))/2; my(g(e)=subst(t + O(x*x^(n\e)), x, x^e) + O(x^n)); Vec(substvec(CycleIndex(n), [j1,j2,j4], [g(1),g(2),g(4)]))} \\ Andrew Howroyd, May 24 2018
Extensions
Terms a(16) and beyond from Andrew Howroyd, May 24 2018
Comments