A125671 Number of bicyclic skeletons with n carbon atoms and the parameter 'alpha' having the value of 2. See the paper by Hendrickson and Parks for details.
1, 3, 11, 32, 100, 294, 881, 2590, 7639, 22344, 65278, 189832, 550846, 1593558, 4600435, 13251623, 38104280, 109382300, 313543725, 897588156, 2566575323, 7331196543, 20921299025, 59653124923, 169959192844, 483897197563, 1376848221698, 3915320424705, 11128029239672
Offset: 4
Keywords
Examples
If n=5 then the number of bicyclics when 'alpha' = two is 3. If n=6 then the number of bicyclics when 'alpha' = two is 11. If n=7 then the number of bicyclics when 'alpha' = two is 32. If n=8 then the number of bicyclics when 'alpha' = two is 100. Case n=5: illustration of the 3 graphs: . o---o o---o o o /| | /|\ /|\ | / | | / | \ / | \ | / | | / | \ / | \| o---o---o o---o---o o---o---o
Links
- Andrew Howroyd, Table of n, a(n) for n = 4..200
- J. B. Hendrickson and C. A. Parks, Generation and Enumeration of Carbon skeletons, J. Chem. Inf. Comput. Sci., 31 (1991), pp. 101-107. See Table VII column 4 on page 104.
Programs
-
PARI
\\ here G is A000598 as series G(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); g} C1(n)={(sum(k=2, n, (k-1)*d1^k) + sum(k=1, n\2, d2^k))/4} C2(n)={(sum(k=1, n\2, d2^k) + sum(i=1, n-1, sum(j=1, n-i, d2^(i\2+j\2) * d1^(i%2+j%2))))/4} seq(n)={my(s=G(n)); my(d=x*(s^2+subst(s, x, x^2))/2); my(g(p,e)=subst(p + O(x*x^(n\e)), x, x^e)); Vec(O(x^n/x) + g(s,1)^2*substvec(C1(n-2),[d1,d2],[g(d,1),g(d,2)]) + g(s,2)*substvec(C2(n-2), [d1,d2,d4], [g(d,1),g(d,2),g(d,4)]))} \\ Andrew Howroyd, May 25 2018
Extensions
a(4) prepended and terms a(16) and beyond from Andrew Howroyd, May 25 2018
Comments