A125702 Number of connected categories with n objects and 2n-1 morphisms.
1, 1, 2, 3, 6, 10, 22, 42, 94, 203, 470, 1082, 2602, 6270, 15482, 38525, 97258, 247448, 635910, 1645411, 4289010, 11245670, 29656148, 78595028, 209273780, 559574414, 1502130920, 4046853091, 10939133170, 29661655793
Offset: 1
Keywords
Examples
From _Gus Wiseman_, Oct 30 2018: (Start) Non-isomorphic representatives of the a(1) = 1 through a(6) = 10 multi-hypertrees of weight n - 1 with singletons allowed: {} {{1}} {{12}} {{123}} {{1234}} {{12345}} {{1}{1}} {{2}{12}} {{13}{23}} {{14}{234}} {{1}{1}{1}} {{3}{123}} {{4}{1234}} {{1}{2}{12}} {{2}{13}{23}} {{2}{2}{12}} {{2}{3}{123}} {{1}{1}{1}{1}} {{3}{13}{23}} {{3}{3}{123}} {{1}{2}{2}{12}} {{2}{2}{2}{12}} {{1}{1}{1}{1}{1}} (End)
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..500
Crossrefs
Programs
-
PARI
\\ TreeGf gives gf of A000081. TreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)} seq(n)={Vec(2*TreeGf(n) - TreeGf(n)^2 - x)} \\ Andrew Howroyd, Nov 02 2019
Formula
a(n) = A122086(n) for n > 1.
G.f.: 2*f(x) - f(x)^2 - x where f(x) is the g.f. of A000081. - Andrew Howroyd, Nov 02 2019
Comments