A125717 a(0)=0; thereafter a(n) = the smallest nonnegative integer not already in the sequence such that a(n-1) is congruent to a(n) (mod n).
0, 1, 3, 6, 2, 7, 13, 20, 4, 22, 12, 23, 11, 24, 10, 25, 9, 26, 8, 27, 47, 5, 49, 72, 48, 73, 21, 75, 19, 77, 17, 79, 15, 81, 115, 45, 117, 43, 119, 41, 121, 39, 123, 37, 125, 35, 127, 33, 129, 31, 131, 29, 133, 80, 134, 189, 245, 74, 16, 193, 253, 70, 132, 69, 197, 67, 199, 65
Offset: 0
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..100000 (first 10000 terms from Ferenc Adorján)
- Ferenc Adorján, Some characteristics of Leroy Quet's permutation sequences
- N. J. A. Sloane, Log-log plot of A370956 vs A370959 (shows terms in A125717 that take the longest to appear).
- Index entries for sequences related to Recamán's sequence
- Index entries for sequences that are permutations of the natural numbers
Crossrefs
Programs
-
Haskell
import Data.IntMap (singleton, member, (!), insert) a125717 n = a125717_list !! n a125717_list = 0 : f [1..] 0 (singleton 0 0) where f (v:vs) w m = g (reverse[w-v,w-2*v..1] ++ [w+v,w+2*v..]) where g (x:xs) = if x `member` m then g xs else x : f vs x (insert x v m) -- Reinhard Zumkeller, Jul 21 2014
-
Mathematica
f[l_List] := Block[{n = Length[l], k = Mod[l[[ -1]], n]},While[MemberQ[l, k], k += n];Append[l, k]];Nest[f, {0}, 70] (* Ray Chandler, Feb 04 2007, updated for change to offset Oct 10 2019 *)
-
PARI
{Quet_p2(n)=/* Permutation sequence a'la Leroy Quet, A125717 */local(x=[1],k=0,w=1); for(i=2,n,if((k=x[i-1]%i)==0,k=i);while(bittest(w,k-1)>0,k+=i);x=concat(x,k);w+=2^(k-1)); return(x)} \\ Ferenc Adorjan
-
PARI
A125717(n,show=0)={my(u=1,a);for(n=1,n,a%=n;while(bittest(u,a),a+=n);u+=1<M. F. Hasler, Nov 03 2014
-
Python
from itertools import count, islice def agen(): # generator of terms an, aset = 0, {0} for n in count(1): yield an an = next(m for m in count(an%n, n) if m not in aset) aset.add(an) print(list(islice(agen(), 70))) # Michael S. Branicky, Jun 07 2023
Extensions
Extended by Ray Chandler, Feb 04 2007
a(0) added by Franklin T. Adams-Watters, Mar 31 2014
Edited by N. J. A. Sloane, Mar 15 2024
Comments