cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125760 a(n) = Product_{k=1..n} A002109(k).

Original entry on oeis.org

1, 1, 4, 432, 11943936, 1031956070400000, 4159895825138319360000000000, 13809882382682787973867537170432000000000000000, 769161257109634779902443718589603914508004789479014400000000000000000000, 16596916396875768196482032091931000424134701157007816971266990744831779993781534720000000000000000000000000
Offset: 0

Views

Author

N. J. A. Sloane, based on a suggestion from J. M. Bergot, Feb 06 2007

Keywords

Crossrefs

Programs

  • Maple
    seq(mul(mul(mul(k,j=1..k), k=1..m), m=1..n), n=0..9); # Zerinvary Lajos, Jun 01 2007
  • Mathematica
    Table[Product[Gamma[1 + k]^k/BarnesG[1 + k], {k, 1, n}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 19 2023 *)
    Table[BarnesG[n + 2]^n/Product[BarnesG[k]^2, {k, 1, n + 1}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 19 2023 *)

Formula

From Vaclav Kotesovec, Nov 19 2023: (Start)
a(n) = BarnesG(n+2)^n / Product_{k=1..n+1} BarnesG(k)^2.
a(n) ~ A^(n+1) * n^(n^3/6 + n^2/2 + 5*n/12 + 1/12) / exp(5*n^3/36 + n^2/4 + n/12 + zeta(3)/(4*Pi^2)), where A is the Glaisher-Kinkelin constant A074962. (End)