cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125764 Array of partial sums of rows of array in A086271, read by antidiagonals.

Original entry on oeis.org

1, 3, 2, 6, 7, 3, 10, 15, 12, 4, 15, 26, 27, 18, 5, 21, 40, 48, 42, 25, 6, 28, 57, 75, 76, 60, 33, 7, 36, 77, 108, 120, 110, 81, 42, 8, 45, 100, 147, 174, 175, 150, 105, 52, 9, 55, 126, 192, 238, 255, 240, 196, 132, 63, 10, 66, 155, 243, 312, 350, 351, 315, 248, 162, 75, 11
Offset: 1

Views

Author

Jonathan Vos Post and Joshua Zucker, Feb 03 2007

Keywords

Comments

Row 3 is = 3rd triangular number + 3rd square + 3rd pentagonal number + 3rd hexagonal number + ... + 3rd k-gonal number. First column is triangular numbers. A086271 Rectangular array T(n,k) of polygonal numbers, by diagonals.

Examples

			Partial row sum array begins:
1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... n.
2 | 3, 7, 12, 18, 25, 33, 42, 52, (n(n+1)/2)-3.
3 | 6, 15, 27, 42, 60, 81, 105, ... (3/2)n^2 + (9/2) n.
4 | 10, 26, 48, 76, 110, 150, ... 3n^2 + 7n.
5 | 15, 40, 75, ... 5n^2 + 10n.
6 | 21, 57, 108, ... (15/2)n^2 + (27/2)n.
		

Crossrefs

Programs

  • Maple
    A086271 := proc(n,k) k*binomial(n,2)+n ; end: A125764 := proc(n,k) add(A086271(n,i),i=1..k) ; end: for d from 1 to 15 do for k from 1 to d do printf("%d, ",A125764(d-k+1,k)) ; od: od: # R. J. Mathar, Nov 02 2007

Formula

a(k,n) = (k*(k-1)/2)n^2 + (k*(k+3)/4)n. a(k,n) = row k of array of partial sums = k-th triangular number + k-th square + k-th pentagonal number + k-th hexagonal number + ... = A000217(k) + A000290(k) + A000326(k) + A000384(k) + ... a(1,n) = n. a(2,n) = (n(n+1)/2)-3 = A000217(n) - 3. a(3,n) = 3*n(n+3)/2 = A000096 with offset 3.

Extensions

More terms from R. J. Mathar, Nov 02 2007
Keyword tabl added by Michel Marcus, Apr 08 2013