A125764 Array of partial sums of rows of array in A086271, read by antidiagonals.
1, 3, 2, 6, 7, 3, 10, 15, 12, 4, 15, 26, 27, 18, 5, 21, 40, 48, 42, 25, 6, 28, 57, 75, 76, 60, 33, 7, 36, 77, 108, 120, 110, 81, 42, 8, 45, 100, 147, 174, 175, 150, 105, 52, 9, 55, 126, 192, 238, 255, 240, 196, 132, 63, 10, 66, 155, 243, 312, 350, 351, 315, 248, 162, 75, 11
Offset: 1
Examples
Partial row sum array begins: 1 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ... n. 2 | 3, 7, 12, 18, 25, 33, 42, 52, (n(n+1)/2)-3. 3 | 6, 15, 27, 42, 60, 81, 105, ... (3/2)n^2 + (9/2) n. 4 | 10, 26, 48, 76, 110, 150, ... 3n^2 + 7n. 5 | 15, 40, 75, ... 5n^2 + 10n. 6 | 21, 57, 108, ... (15/2)n^2 + (27/2)n.
Links
- Eric Weisstein's World of Mathematics, Polygonal Number. See equation (4), our partial sums are on this as array element values.
Programs
-
Maple
A086271 := proc(n,k) k*binomial(n,2)+n ; end: A125764 := proc(n,k) add(A086271(n,i),i=1..k) ; end: for d from 1 to 15 do for k from 1 to d do printf("%d, ",A125764(d-k+1,k)) ; od: od: # R. J. Mathar, Nov 02 2007
Formula
a(k,n) = (k*(k-1)/2)n^2 + (k*(k+3)/4)n. a(k,n) = row k of array of partial sums = k-th triangular number + k-th square + k-th pentagonal number + k-th hexagonal number + ... = A000217(k) + A000290(k) + A000326(k) + A000384(k) + ... a(1,n) = n. a(2,n) = (n(n+1)/2)-3 = A000217(n) - 3. a(3,n) = 3*n(n+3)/2 = A000096 with offset 3.
Extensions
More terms from R. J. Mathar, Nov 02 2007
Keyword tabl added by Michel Marcus, Apr 08 2013
Comments