A125800 Rectangular table where column k equals row sums of matrix power A078122^k, read by antidiagonals.
1, 1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 23, 12, 4, 1, 1, 239, 93, 22, 5, 1, 1, 5828, 1632, 238, 35, 6, 1, 1, 342383, 68457, 5827, 485, 51, 7, 1, 1, 50110484, 7112055, 342382, 15200, 861, 70, 8, 1, 1, 18757984046, 1879090014, 50110483, 1144664, 32856, 1393, 92, 9, 1
Offset: 0
Examples
Recurrence T(n,k) = T(n,k-1) + T(n-1,3*k) is illustrated by: T(3,3) = T(3,2) + T(2,9) = 93 + 145 = 238; T(4,3) = T(4,2) + T(3,9) = 1632 + 4195 = 5827; T(5,3) = T(5,2) + T(4,9) = 68457 + 273925 = 342382. Rows of this table begin: 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...; 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...; 1, 5, 12, 22, 35, 51, 70, 92, 117, 145, 176, 210, ...; 1, 23, 93, 238, 485, 861, 1393, 2108, 3033, 4195, 5621, ...; 1, 239, 1632, 5827, 15200, 32856, 62629, 109082, 177507, 273925,...; 1, 5828, 68457, 342382, 1144664, 3013980, 6769672, 13570796, ...; 1, 342383, 7112055, 50110483, 215155493, 690729981, 1828979530, ...; 1, 50110484, 1879090014, 18757984045, 103674882878, 406279238154,..; 1, 18757984046, 1287814075131, 18318289003447, 130648799730635, ...; Triangle A078122 begins: 1; 1, 1; 1, 3, 1; 1, 12, 9, 1; 1, 93, 117, 27, 1; 1, 1632, 3033, 1080, 81, 1; 1, 68457, 177507, 86373, 9801, 243, 1; ... where row sums form column 1 of this table A125790, and column k of A078122 equals column 3^k - 1 of this table A125800. Matrix square A078122^2 begins: 1; 2, 1; 5, 6, 1; 23, 51, 18, 1; 239, 861, 477, 54, 1; 5828, 32856, 25263, 4347, 162, 1; ... where row sums form column 2 of this table A125790, and column 0 of A078122^2 forms column 1 of this table A125790.
Links
- Robert Israel, Table of n, a(n) for n = 0..2484 (antidiagonals 0 to 69, flattened)
Crossrefs
Programs
-
Maple
f[0]:= 1/(1-z): S[0]:= series(f[0],z,21): for n from 1 to 20 do ff:= unapply(f[n-1],z); f[n]:= simplify(1/3*sum(ff(w*z^(1/3)),w=RootOf(Z^3-1,Z)))/(1-z); S[n]:= series(f[n],z,21-n) od: seq(seq(coeff(S[s-i],z,i),i=0..s),s=0..20); # Robert Israel, Jun 02 2019
-
Mathematica
T[0, ] = T[, 0] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 3 k]; Table[T[n-k, k], {n, 0, 9}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jan 08 2016 *)
-
PARI
T(n,k,p=0,q=3)=local(A=Mat(1), B); if(n
Formula
T(n,k) = T(n,k-1) + T(n-1,3*k) for n > 0, k > 0, with T(0,n)=T(n,0)=1 for n >= 0.
G.f. of row n is g_n(z) where g_{n+1}(z) = (1-z)^(-1)*Sum_{w^3=1} g_n(w*z^(1/3)) (the sum being over the cube roots of unity). - Robert Israel, Jun 02 2019
Comments