A125801 Column 3 of table A125800; also equals row sums of matrix power A078122^3.
1, 4, 22, 238, 5827, 342382, 50110483, 18757984045, 18318289003447, 47398244089264546, 329030840161393127680, 6190927493941741957366099, 318447442589056401640929570895, 45106654667152833836835578059359838
Offset: 0
Keywords
Examples
To obtain t_3(5,1) we use the table T, defined as T(i,j) = t_3(i,j), for i=1,2,...,5(=n), and j=0,1,2,...,81(= k*m^{n-1}). It is 1,1,1,1,1,1,...1; 1,4,7,10,13,...,82; 1,22,70,145,247,376,532,715,925,1162; 1,238,1393,4195; 1,5827; Column 1 contains the first 5 terms of A125801. - _Valentin Bakoev_, Feb 20 2009
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..40
- V. Bakoev, Algorithmic approach to counting of certain types m-ary partitions, Discrete Mathematics, 275 (2004) pp. 17-41.
Programs
-
Maple
g:= proc(b, n, k) option remember; local t; if b<0 then 0 elif b=0 or n=0 or k<=1 then 1 elif b>=n then add (g(b-t, n, k) *binomial (n+1, t) *(-1)^(t+1), t=1..n+1); else g(b-1, n, k) +g(b*k, n-1, k) fi end: a:= n-> g(1, n+1,3)-1: seq(a(n), n=0..25); # Alois P. Heinz, Feb 27 2009
-
Mathematica
T[0, ] = T[, 0] = 1; T[n_, k_] := T[n, k] = T[n, k-1] + T[n-1, 3 k]; a[n_] := T[n, 3]; Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 15}] (* Jean-François Alcover, Jan 21 2017 *)
-
PARI
a(n)=local(p=3,q=3,A=Mat(1), B); for(m=1, n+1, B=matrix(m, m); for(i=1, m, for(j=1, i, if(j==i || j==1, B[i, j]=1, B[i, j]=(A^q)[i-1, j-1]); )); A=B); return(sum(c=0,n,(A^p)[n+1,c+1]))
Formula
Denote the sum: m^n +m^n + ... + m^n, k times, by k*m^n (m > 1, n > 0 and k are positive integers). The general formula for the number of all partitions of the sum k*m^n into powers of m smaller than m^n, is t_m(n, k)= 1 when n=1 or k=0, or = t_m(n, k-1) + Sum_{j=1..m} t_m(n-1, (k-1)*n+j)}, when n > 1 and k > 0. A125801 is obtained for m=3 and n=1,2,3,... - Valentin Bakoev, Feb 20 2009
From Valentin Bakoev, Feb 20 2009: (Start)
For given m, the general formula for t_m(n, k) and the corresponding tables T, computed as in the example, determine a family of related sequences (placed in the rows or in the columns of T). For example, the sequences from the 3rd, 4th, etc. rows of the given table are not represented in the OEIS till now. (End)
a(n) = A145515(n+1,3)-1. - Alois P. Heinz, Feb 27 2009
Comments