A125810 Triangle of q-Bell number coefficients, read by rows that form polynomials in q, giving the eigensequence for the triangle of q-binomial coefficients.
1, 1, 2, 4, 1, 8, 4, 3, 16, 12, 13, 8, 3, 32, 32, 42, 38, 33, 15, 10, 1, 64, 80, 120, 133, 145, 121, 98, 60, 37, 15, 4, 128, 192, 320, 408, 507, 526, 544, 457, 391, 281, 195, 104, 61, 20, 6, 256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4
Offset: 0
Examples
Row g.f.s B_q(n) are polynomials in q generated by: B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0 with B_q(0)=1 where the triangle of q-binomial coefficients C_q(n,k) begins: 1; 1, 1; 1, 1 + q, 1; 1, 1 + q + q^2, 1 + q + q^2, 1; 1, 1 + q + q^2 + q^3, 1 + q + 2*q^2 + q^3 + q^4, 1 + q + q^2 + q^3, 1; The initial q-Bell coefficients in B_q(n) are: B_q(0) = 1; B_q(1) = 1; B_q(2) = 2; B_q(3) = 4 + q; B_q(4) = 8 + 4*q + 3*q^2; B_q(5) = 16 + 12*q + 13*q^2 + 8*q^3 + 3*q^4; B_q(6) = 32 + 32*q + 42*q^2 + 38*q^3 + 33*q^4 + 15*q^5 + 10*q^6 + q^7. Number of terms in row n is given by A125811, which starts: 1,1,1,2,3,5,8,11,15,20,26,32,39,47,56,66,76,87,99,112,126,141,156,... Triangle begins: 1; 1; 2; 4, 1; 8, 4, 3; 16, 12, 13, 8, 3; 32, 32, 42, 38, 33, 15, 10, 1; 64, 80, 120, 133, 145, 121, 98, 60, 37, 15, 4; 128, 192, 320, 408, 507, 526, 544, 457, 391, 281, 195, 104, 61, 20, 6; 256, 448, 816, 1160, 1585, 1875, 2189, 2259, 2256, 2066, 1819, 1450, 1133, 777, 506, 300, 158, 65, 25, 4; ...
Links
- Alois P. Heinz, Rows n = 0..50, flattened
- Arvind Ayyer and Naren Sundaravaradan, An area-bounce exchanging bijection on a large subset of Dyck paths, arXiv:2401.14668 [math.CO], 2024. See p. 20.
Crossrefs
Programs
-
Maple
b:= proc(o, u, t) option remember; expand( `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(x^(u+j-1)* b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o)))) end: T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 0$2)): seq(T(n), n=0..10); # Alois P. Heinz, Feb 21 2025
-
Mathematica
QB[n_, q_] := QB[n, q] = Sum[QB[j, q] QBinomial[n-1, j, q], {j, 0, n-1}] // FunctionExpand // Simplify; QB[0, q_]=1; QB[1, q_]=1; Table[ CoefficientList[QB[n, q], q], {n, 0, 9}] // Flatten (* Jean-François Alcover, Feb 29 2016 *)
-
PARI
/* q-Binomial coefficients: */ {C_q(n, k) = if(n
Formula
T(n,0) = 2^(n-1) for n>0. G.f. of row n is a polynomial in q, B_q(n), that is generated by the recurrence: B_q(n) = Sum_{j=0..n-1} B_q(j) * C_q(n-1,j) for n>0, with B_q(0)=1. The q-binomial coefficient (also called Gaussian binomial coefficient) is given by: C_q(n,k) = [Product_{i=n-k+1..n} (1-q^i)]/[Product_{j=1..k} (1-q^j)].
Sum_{k>0} k * T(n,k) = A264082(n). - Alois P. Heinz, Apr 03 2016
Comments