A125814 q-Bell numbers for q=4; eigensequence of A022168, which is the triangle of Gaussian binomial coefficients [n,k] for q=4.
1, 1, 2, 8, 72, 1552, 84416, 12107584, 4726583424, 5150624868864, 16010990175691264, 144648776120641766400, 3857411545088966609514496, 307705704204270334224705015808, 74294186209325019487040708053442560, 54874536782175258883045772243829235417088
Offset: 0
Keywords
Examples
The recurrence: a(n) = Sum_{k=0..n-1} A022168(n-1,k) * a(k) is illustrated by: a(2) = 1*(1) + 5*(1) + 1*(2) = 8; a(3) = 1*(1) + 21*(1) + 21*(2) + 1*(8) = 72; a(4) = 1*(1) + 85*(1) + 357*(2) + 85*(8) + 1*(72) = 1552. Triangle A022168 begins: 1; 1, 1; 1, 5, 1; 1, 21, 21, 1; 1, 85, 357, 85, 1; 1, 341, 5797, 5797, 341, 1; 1, 1365, 93093, 376805, 93093, 1365, 1; ...
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..65
Programs
-
Maple
b:= proc(o, u, t) option remember; `if`(u+o=0, 1, `if`(t>0, b(u+o, 0$2), 0)+add(4^(u+j-1)* b(o-j, u+j-1, min(2, t+1)), j=`if`(t=0, 1, 1..o))) end: a:= n-> b(n, 0$2): seq(a(n), n=0..18); # Alois P. Heinz, Feb 21 2025
-
Mathematica
b[o_, u_, t_] := b[o, u, t] = If[u + o == 0, 1, If[t > 0, b[u + o, 0, 0], 0] + Sum[4^(u + j - 1)* b[o - j, u + j - 1, Min[2, t + 1]], {j, If[t == 0, {1}, Range[o]]}]]; a[n_] := b[n, 0, 0]; Table[a[n], {n, 0, 18}] (* Jean-François Alcover, Mar 15 2025, after Alois P. Heinz *)
-
PARI
/* q-Binomial coefficients: */ {C_q(n,k)=if(n
Formula
a(n) = Sum_{k=0..n-1} A022168(n-1,k) * a(k) for n>0, with a(0)=1.
a(n) = Sum_{k>=0} 4^k * A125810(n,k). - Alois P. Heinz, Feb 21 2025