cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A125824 Denominator of n!/3^n.

Original entry on oeis.org

1, 3, 9, 9, 27, 81, 81, 243, 729, 243, 729, 2187, 2187, 6561, 19683, 19683, 59049, 177147, 59049, 177147, 531441, 531441, 1594323, 4782969, 4782969, 14348907, 43046721, 4782969, 14348907, 43046721, 43046721, 129140163, 387420489
Offset: 0

Views

Author

Benoit Cloitre, Feb 06 2007

Keywords

Crossrefs

A212307 (numerators).

Programs

  • GAP
    List([0..40], n-> DenominatorRat(Factorial(n)/3^n) ); # G. C. Greubel, Aug 03 2019
  • Magma
    [Denominator(Factorial(n)/3^n): n in [0..40]]; // G. C. Greubel, Aug 03 2019
    
  • Mathematica
    Table[Denominator[n!/3^n], {n,0,40}] (* G. C. Greubel, Aug 03 2019 *)
  • PARI
    a(n)=denominator(n!/3^n)
    
  • Sage
    [denominator(factorial(n)/3^n) for n in (0..40)] # G. C. Greubel, Aug 03 2019
    

Formula

a(0)=1, a(3n+2) = 3^(n+2)*a(n), a(3n+1) = 3^(n+1)*a(n), a(3n) = 3^n*a(n).
a(n) = 3^A089792(n).
a(n) = denominator((1/(2*Pi)) * Integral_{t=0..2*Pi} exp(i*3*t)(-((Pi-t)/i)^n), i=sqrt(-1). - Paul Barry, Apr 02 2007