A125906 Riordan array (1/(1 + 5*x + x^2), x/(1 + 5*x + x^2))^(-1); inverse of Riordan array A123967.
1, 5, 1, 26, 10, 1, 140, 77, 15, 1, 777, 540, 153, 20, 1, 4425, 3630, 1325, 254, 25, 1, 25755, 23900, 10509, 2620, 380, 30, 1, 152675, 155764, 79065, 23989, 4550, 531, 35, 1, 919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1
Offset: 0
Examples
Triangle begins 1; 5, 1; 26, 10, 1; 140, 77, 15, 1; 777, 540, 153, 20, 1; 4425, 3630, 1325, 254, 25, 1; 25755, 23900, 10509, 2620, 380, 30, 1; 152675, 155764, 79065, 23989, 4550, 531, 35, 1; 919139, 1010560, 575078, 203560, 47270, 7240, 707, 40, 1; From _Philippe Deléham_, Nov 07 2011: (Start) Production matrix begins 5, 1; 1, 5, 1,; 0, 1, 5, 1; 0, 0, 1, 5, 1; 0, 0, 0, 1, 5, 1; 0, 0, 0, 0, 1, 5, 1; 0, 0, 0, 0, 0, 1, 5, 1; 0, 0, 0, 0, 0, 0, 1, 5, 1; 0, 0, 0, 0, 0, 0, 0, 1, 5, 1; (End)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Crossrefs
Cf. A182401.
Programs
-
Mathematica
T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 5, 5], {n, 0, 10}, {k, 0, n}] // Flatten (* G. C. Greubel, May 22 2017 *)
Formula
Triangle T(5) where T(x) is defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,k) = T(n-1,k-1) + x*T(n-1,k) + T(n-1,k+1). Sum_{k=0..n} T(m,k)*T(n,k) = T(m+n,0). Sum_{k=0..n} T(n,k) = A122898(n).
Sum_{k=0..n} T(n,k)*(k+1) = 7^n. - Philippe Deléham, Mar 26 2007
T(n,0) = A182401(n). - Philippe Deléham, Mar 04 2013
The n-th row polynomial R(n,x) equals the n-th degree Taylor polynomial of the function (1 - x^2)*(1 + 5*x + x^2)^n expanded about the point x = 0. - Peter Bala, Sep 06 2022
Comments