A333867 Table with T(1,1) = 1; for n>1, T(n,k) is the number of k's in rows 1 through n-1.
1, 1, 2, 2, 1, 3, 2, 3, 3, 1, 4, 3, 3, 4, 3, 5, 1, 5, 3, 6, 2, 1, 6, 4, 7, 2, 2, 1, 7, 6, 7, 3, 2, 2, 1, 8, 8, 8, 3, 2, 3, 3, 8, 9, 11, 3, 2, 3, 3, 3, 8, 10, 15, 3, 2, 3, 3, 4, 1, 0, 1, 10, 11, 18, 4, 2, 3, 3, 5, 1, 1, 1, 0, 0, 0, 1, 14, 12, 20, 5, 3, 3, 3, 5, 1, 2, 2, 0, 0, 0, 1, 0, 0, 1, 17, 14, 23, 5, 5
Offset: 1
Examples
1; 1; 2; 2, 1; 3, 2; 3, 3, 1; 4, 3, 3;
Links
- Franklin T. Adams-Watters, First 32 rows, flattened
- Michael De Vlieger, Plot a(w(j) + k - 1) at (j,k) for j = 1..60 and w the sequence of partial sums of A126027, showing a(m) = 0 in black, a(m) = 1 in red, and a(m) > 1 in light blue.
- Sean A. Irvine, Java program (github)
Crossrefs
Programs
-
Haskell
import Data.List (sort, group) a030717 n k = a030717_tabf !! (n-1) !! (k-1) a030717_row n = a030717_tabf !! (n-1) a030717_tabf = [1] : f [1] where f xs = ys : f ((filter (> 0) ys) ++ xs) where ys = h (group $ sort xs) [1..] where h [] _ = [] h vss'@(vs:vss) (w:ws) | head vs == w = (length vs) : h vss ws | otherwise = 0 : h vss' ws -- Reinhard Zumkeller, Dec 28 2014
-
Mathematica
t = {{1}}; Do[AppendTo[t, BinCounts[#, {1, Max[#] + 1}] &[Flatten[t]]], {30}]; Map[Length, t] (* A126027*) Map[Total, t] (* A253170*) Flatten[t] (* A333867 *) (* Peter J. C. Moses, Apr 09 2020 *)
Extensions
More terms from Franklin T. Adams-Watters, Dec 14 2006
Comments