cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126075 Triangle T(n,k), 0 <= k <= n, read by rows, defined by: T(0,0)=1, T(n,k)=0 if k < 0 or if k > n, T(n,0) = 2*T(n-1,0) + T(n-1,1), T(n,k) = T(n-1,k-1) + T(n-1,k+1) for k >= 1.

Original entry on oeis.org

1, 2, 1, 5, 2, 1, 12, 6, 2, 1, 30, 14, 7, 2, 1, 74, 37, 16, 8, 2, 1, 185, 90, 45, 18, 9, 2, 1, 460, 230, 108, 54, 20, 10, 2, 1, 1150, 568, 284, 128, 64, 22, 11, 2, 1, 2868, 1434, 696, 348, 150, 75, 24, 12, 2, 1
Offset: 0

Views

Author

Philippe Deléham, Mar 02 2007

Keywords

Comments

Riordan array (c(x^2)/(1-2xc(x^2)),xc(x^2)) where c(x)=g.f. of Catalan numbers A000108. - Philippe Deléham, Mar 18 2007
This triangle belongs to the family of triangles defined by: T(0,0)=1, T(n,k)=0 if k<0 or if k>n, T(n,0)=x*T(n-1,0)+T(n-1,1), T(n,k)=T(n-1,k-1)+y*T(n-1,k)+T(n-1,k+1) for k>=1. Other triangles arise by choosing different values for (x,y): (0,0) -> A053121; (0,1) -> A089942; (0,2) -> A126093; (0,3) -> A126970; (1,0)-> A061554; (1,1) -> A064189; (1,2) -> A039599; (1,3) -> A110877; (1,4) -> A124576; (2,0) -> A126075; (2,1) -> A038622; (2,2) -> A039598; (2,3) -> A124733; (2,4) -> A124575; (3,0) -> A126953; (3,1) -> A126954; (3,2) -> A111418; (3,3) -> A091965; (3,4) -> A124574; (4,3) -> A126791; (4,4) -> A052179; (4,5) -> A126331; (5,5) -> A125906. - Philippe Deléham, Sep 25 2007

Examples

			Triangle begins:
     1;
     2,    1;
     5,    2,   1;
    12,    6,   2,   1;
    30,   14,   7,   2,   1;
    74,   37,  16,   8,   2,  1;
   185,   90,  45,  18,   9,  2,  1;
   460,  230, 108,  54,  20, 10,  2,  1;
  1150,  568, 284, 128,  64, 22, 11,  2, 1;
  2868, 1434, 696, 348, 150, 75, 24, 12, 2, 1;
		

Crossrefs

Programs

  • Maple
    A126075 := proc (n, k)
    add( 2^(n-k-2*j)*binomial(n, j), j = 0..floor((n-k)/2) ) - add( 2^(n-k-2-2*j)*binomial(n, j), j = 0..floor((n-k-2)/2) )
    end proc:
    # display sequence in triangular form
    for n from 0 to 10 do seq(A126075(n, k), k = 0..n) end do;
    # Peter Bala, Feb 20 2018
  • Mathematica
    T[0, 0, x_, y_] := 1; T[n_, 0, x_, y_] := x*T[n - 1, 0, x, y] + T[n - 1, 1, x, y]; T[n_, k_, x_, y_] := T[n, k, x, y] = If[k < 0 || k > n, 0, T[n - 1, k - 1, x, y] + y*T[n - 1, k, x, y] + T[n - 1, k + 1, x, y]]; Table[T[n, k, 2, 0], {n, 0, 49}, {k, 0, n}] // Flatten  (* G. C. Greubel, Apr 21 2017 *)

Formula

Sum_{k=0..n} T(n,k) = A127358(n). T(n,0)=A054341(n).
Sum_{k=0..n} T(n,k)*(-k+1) = 2^n. - Philippe Deléham, Mar 25 2007
From Peter Bala, Feb 20 2018: (Start)
T(n,k) = Sum_{j = 0..floor((n-k)/2)} 2^(n-k-2*j)*binomial(n, j) - Sum_{j = 0..floor((n-k-2)/2)} 2^(n-k-2-2*j)*binomial(n, j), 0 <= k <= n. - Peter Bala, Feb 20 2018
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 - x^2)/(1 - 2*x) * (1 + x^2)^n about 0. For example, for n = 4, (1 - x^2)/(1 - 2*x) * (1 + x^2)^4 = (30*x^4 + 14*x*3 + 7*x^2 + 2*x + 1) + O(x^5). (End)