A126087 Expansion of c(2*x^2)/(1-x*c(2*x^2)), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).
1, 1, 3, 5, 15, 29, 87, 181, 543, 1181, 3543, 7941, 23823, 54573, 163719, 381333, 1143999, 2699837, 8099511, 19319845, 57959535, 139480397, 418441191, 1014536117, 3043608351, 7426790749, 22280372247, 54669443141, 164008329423
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- Alin Bostan, Computer Algebra for Lattice Path Combinatorics, Séminaire de Combinatoire Ph. Flajolet, March 28 2013.
- Alin Bostan, Andrew Elvey Price, Anthony John Guttmann, and Jean-Marie Maillard, Stieltjes moment sequences for pattern-avoiding permutations, arXiv:2001.00393 [math.CO], 2020.
Programs
-
Magma
R
:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-8*x^2))/(x*(4*x-1+Sqrt(1-8*x^2))) )); // G. C. Greubel, Nov 07 2022 -
Maple
c:=x->(1-sqrt(1-4*x))/2/x: G:=c(2*x^2)/(1-x*c(2*x^2)): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # Emeric Deutsch, Mar 04 2007
-
Mathematica
CoefficientList[Series[(1-Sqrt[1-8*x^2])/(x*(4*x-1+Sqrt[1-8*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
-
SageMath
def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1) def A126087(n): return sum(2^(n-k)*A120730(n,k) for k in range(n+1)) [A126087(n) for n in range(51)] # G. C. Greubel, Nov 07 2022
Formula
G.f.: (1-sqrt(1-8*x^2))/(x*(4*x-1+sqrt(1-8*x^2))). - Emeric Deutsch, Mar 04 2007
a(n) = Sum_{k=0..n} 2^(n-k)*A120730(n,k). - Philippe Deléham, Oct 16 2008
a(n-1) = Sum_{k=1..n} (1+(-1)^(n-k))*k*2^((n-k)/2-1)*C(n,floor((n+k)/2))/n. - Vladimir Kruchinin, Feb 18 2011
a(2*n) = A089022(n). - Philippe Deléham, Nov 02 2011
D-finite with recurrence: (n+1)*a(n) = 3*(n+1)*a(n-1) - 8*(2-n)*a(n-2) - 24*(n-2)*a(n-3). - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(3*(n+1)/2) * (3+2*sqrt(2) + (3-2*sqrt(2))*(-1)^n) / (n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 13 2014
Extensions
More terms from Emeric Deutsch, Mar 04 2007
Comments