cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126087 Expansion of c(2*x^2)/(1-x*c(2*x^2)), where c(x) = (1-sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers (A000108).

Original entry on oeis.org

1, 1, 3, 5, 15, 29, 87, 181, 543, 1181, 3543, 7941, 23823, 54573, 163719, 381333, 1143999, 2699837, 8099511, 19319845, 57959535, 139480397, 418441191, 1014536117, 3043608351, 7426790749, 22280372247, 54669443141, 164008329423
Offset: 0

Views

Author

Philippe Deléham, Mar 03 2007

Keywords

Comments

Series reversion of x*(1+x)/(1+2*x+3*x^2) [offset 0]. - Paul Barry, Mar 13 2007
Hankel transform is 2^C(n+1,2). - Philippe Deléham, Mar 16 2007

Crossrefs

Programs

  • Magma
    R:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-8*x^2))/(x*(4*x-1+Sqrt(1-8*x^2))) )); // G. C. Greubel, Nov 07 2022
    
  • Maple
    c:=x->(1-sqrt(1-4*x))/2/x: G:=c(2*x^2)/(1-x*c(2*x^2)): Gser:=series(G,x=0,35): seq(coeff(Gser,x,n),n=0..32); # Emeric Deutsch, Mar 04 2007
  • Mathematica
    CoefficientList[Series[(1-Sqrt[1-8*x^2])/(x*(4*x-1+Sqrt[1-8*x^2])), {x, 0, 20}], x] (* Vaclav Kotesovec, Feb 13 2014 *)
  • SageMath
    def A120730(n, k): return 0 if (n>2*k) else binomial(n, k)*(2*k-n+1)/(k+1)
    def A126087(n): return sum(2^(n-k)*A120730(n,k) for k in range(n+1))
    [A126087(n) for n in range(51)] # G. C. Greubel, Nov 07 2022

Formula

G.f.: (1-sqrt(1-8*x^2))/(x*(4*x-1+sqrt(1-8*x^2))). - Emeric Deutsch, Mar 04 2007
a(n) = Sum_{k=0..n} 2^(n-k)*A120730(n,k). - Philippe Deléham, Oct 16 2008
a(n-1) = Sum_{k=1..n} (1+(-1)^(n-k))*k*2^((n-k)/2-1)*C(n,floor((n+k)/2))/n. - Vladimir Kruchinin, Feb 18 2011
a(2*n) = A089022(n). - Philippe Deléham, Nov 02 2011
D-finite with recurrence: (n+1)*a(n) = 3*(n+1)*a(n-1) - 8*(2-n)*a(n-2) - 24*(n-2)*a(n-3). - R. J. Mathar, Nov 14 2011
a(n) ~ 2^(3*(n+1)/2) * (3+2*sqrt(2) + (3-2*sqrt(2))*(-1)^n) / (n^(3/2) * sqrt(Pi)). - Vaclav Kotesovec, Feb 13 2014

Extensions

More terms from Emeric Deutsch, Mar 04 2007