cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126151 E.g.f.: ( (1 + cos(sqrt(6)*x))/2 )^(-1/3), showing coefficients of only the even powers of x.

Original entry on oeis.org

1, 1, 6, 96, 2976, 151416, 11449296, 1204566336, 168233625216, 30110372009856, 6719377991060736, 1829013279998846976, 596449130341224185856, 229556544889929225117696, 102956750031135241952280576, 53228316147100497514507862016, 31423560379886826670772937424896
Offset: 0

Views

Author

Paul D. Hanna, Dec 19 2006

Keywords

Comments

Previous name was: Column 0 and row sums of symmetric triangle A126150.

Examples

			E.g.f.: A(x) = 1 + x^2/2! + 6*x^4/4! + 96*x^6/6! + 2976*x^8/8! + 151416*x^10/10! +...
where the logarithm begins:
log(A(x)) = x^2/2! + 3*x^4/4! + 36*x^6/6! + 918*x^8/8! + 40176*x^10/10! + 2686608*x^12/12! +...
compare the logarithm to
A(x)^3 = 1 + 3*x^2/! + 36*x^4/4! + 918*x^6/6! + 40176*x^8/8! + 2686608*x^10/10! +...
where A(x)^3 = 2/(1 + cos(sqrt(6)*x)).
		

Crossrefs

Cf. A126150; diagonals: A126152, A126153.
Cf. A000326.

Programs

  • Maple
    A000326 := n -> n * (3 * n - 1) / 2;
    T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) fi fi end:
    a := n -> T(n, n): seq(a(n), n = 0..16);  # Peter Luschny, Sep 30 2023
  • Mathematica
    terms = 18;
    CoefficientList[((1 + Cos[Sqrt[6] x])/2)^(-3^(-1)) + O[x]^(2 terms), x] Range[0, 2 terms - 2]! // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 26 2018 *)
  • PARI
    /* Continued Fraction involving pentagonal numbers A000326: */
    {a(n)=local(CF=1+x*O(x),m,P); for(k=1, n,m=n-k+1;P=m*(3*m-1)/2; CF=1/(1-P*x*CF)); polcoeff(CF, n, x)}
    for(n=0,20,print1(a(n),","))
    
  • PARI
    /* E.g.f. A(x) = exp( Integral^2 A(x)^3 dx^2 ): */
    {a(n)=local(A=1+x*O(x)); for(i=1, n, A=exp(intformal(intformal(A^3 + x*O(x^(2*n))))) ); (2*n)!*polcoeff(A, 2*n, x)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    /* E.g.f. A(x) = exp( Integral A(x)^(3/2) * Integral 1/A(x)^(3/2) dx dx ) */
    {a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( A^(3/2) * intformal( 1/A^(3/2) + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
    for(n=0,20,print1(a(2*n),", "))

Formula

a(n) = Sum_{0<=k<=n} A087736(n,k)*2^(n-k). - Philippe Deléham, Jul 17 2007
G.f.: 1/(1-x/(1-5*x/(1-12*x/(1-22*x/(1-35*x/(1-51*x/(1-70*x/(1-...- (n*(3*n-1)/2)*x/(1-...))))))))), a continued fraction involving pentagonal numbers A000326. - Paul D. Hanna, Feb 15 2012
E.g.f. satisfies: A(x) = exp( Integral Integral A(x)^3 dx dx ), where A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! and the constant of integration is zero. - Paul D. Hanna, May 29 2015
E.g.f. satisfies: A(x) = exp( Integral A(x)^(3/2) * Integral 1/A(x)^(3/2) dx dx ), where A(x) = Sum_{n>=0} a(n)*x^(2*n)/(2*n)! and the constant of integration is zero. - Paul D. Hanna, Jun 02 2015
a(n) ~ Gamma(1/3) * 2^(3*n+4/3) * 3^(n+1/2) * n^(2*n+1/6) / (exp(2*n) * Pi^(2*n+7/6)). - Vaclav Kotesovec, May 30 2015
The computation can be based on the pentagonal numbers, a(n) = T(n, n) where T(n, k) = A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n, and T(n, 0) = 1, T(n, n) = T(n, n-1) if n > 0. This is equivalent to Paul D. Hanna's continued fraction 2012. - Peter Luschny, Sep 30 2023

Extensions

New name from Paul D. Hanna, May 30 2015