A365673
Array A(n, k) read by ascending antidiagonals. Polygonal number weighted generalized Catalan sequences.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 15, 8, 1, 1, 1, 5, 34, 105, 16, 1, 1, 1, 6, 61, 496, 945, 32, 1, 1, 1, 7, 96, 1385, 11056, 10395, 64, 1, 1, 1, 8, 139, 2976, 50521, 349504, 135135, 128, 1, 1, 1, 9, 190, 5473, 151416, 2702765, 14873104, 2027025, 256, 1
Offset: 0
Array A(n, k) starts: (polygon|diagonal|triangle)
[0] 1, 1, 1, 1, 1, 1, 1, ... A258837 A000012
[1] 1, 1, 2, 4, 8, 16, 32, ... A080956 A011782
[2] 1, 1, 3, 15, 105, 945, 10395, ... A001477 A001147 A001498
[3] 1, 1, 4, 34, 496, 11056, 349504, ... A000217 A002105 A365674
[4] 1, 1, 5, 61, 1385, 50521, 2702765, ... A000290 A000364 A060058
[5] 1, 1, 6, 96, 2976, 151416, 11449296, ... A000326 A126151 A366138
[6] 1, 1, 7, 139, 5473, 357721, 34988647, ... A000384 A126156 A365672
[7] 1, 1, 8, 190, 9080, 725320, 87067520, ... A000566 A366150 A366149
[8] 1, 1, 9, 249, 14001, 1322001, 188106489, ... A000567
A054556 A366137
-
poly := (s, n) -> ((s - 2) * n^2 - (s - 4) * n) / 2:
T := proc(s, n, k) option remember; if k = 0 then 1 else if k = n then T(s, n, k-1) else poly(s, n - k + 1) * T(s, n, k - 1) + T(s, n - 1, k) fi fi end:
for n from 0 to 8 do A := (n, k) -> T(n, k, k): seq(A(n, k), k = 0..9) od;
# Alternative, using continued fractions:
A := proc(p, L) local CF, poly, k, m, P, ser;
poly := (s, n) -> ((s - 2)*n^2 - (s - 4)*n)/2;
CF := 1 + x;
for k from 1 to L do
m := L - k + 1;
P := poly(p, m);
CF := 1/(1 - P*x*CF)
od;
ser := series(CF, x, L);
seq(coeff(ser, x, m), m = 0..L-1)
end:
for p from 0 to 8 do lprint(A(p, 8)) od;
-
poly[s_, n_] := ((s - 2) * n^2 - (s - 4) * n) / 2;
T[s_, n_, k_] := T[s, n, k] = If[k == 0, 1, If[k == n, T[s, n, k - 1], poly[s, n - k + 1] * T[s, n, k - 1] + T[s, n - 1, k]]];
A[n_, k_] := T[n, k, k];
Table[A[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 27 2023, from first Maple program *)
-
A(p, n) = {
my(CF = 1 + x,
poly(s, n) = ((s - 2)*n^2 - (s - 4)*n)/2,
m, P
);
for(k = 1, n,
m = n - k + 1;
P = poly(p, m);
CF = 1/(1 - P*x*CF)
);
Vec(CF + O(x^(n)))
}
for(p = 0, 8, print(A(p, 8)))
\\ Michel Marcus and Peter Luschny, Oct 02 2023
-
from functools import cache
@cache
def T(s, n, k):
if k == 0: return 1
if k == n: return T(s, n, k - 1)
p = (n - k + 1) * ((s - 2) * (n - k + 1) - (s - 4)) // 2
return p * T(s, n, k - 1) + T(s, n - 1, k)
def A(n, k): return T(n, k, k)
for n in range(9): print([A(n, k) for k in range(9)])
A126150
Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 4 times first term.
Original entry on oeis.org
1, 1, 4, 1, 6, 24, 36, 24, 6, 96, 384, 636, 744, 636, 384, 96, 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976, 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416, 11449296, 45797184
Offset: 0
Triangle begins:
1;
1, 4, 1;
6, 24, 36, 24, 6;
96, 384, 636, 744, 636, 384, 96;
2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976;
151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ...
If we write the triangle like this:
.......................... ....1;
................... ....1, ....4, ....1;
............ ....6, ...24, ...36, ...24, ....6;
..... ...96, ..384, ..636, ..744, ..636, ..384, ...96;
.2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976;
then the first term in each row is the sum of the previous row:
2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96
the next term is 4 times the first:
11904 = 4*2976,
and the remaining terms in each row are obtained by the rule illustrated by:
20256 = 2*11904 - 2976 - 6*96;
26304 = 2*20256 - 11904 - 6*384;
28536 = 2*26304 - 20256 - 6*636;
26304 = 2*28536 - 26304 - 6*744;
20256 = 2*26304 - 28536 - 6*636;
11904 = 2*20256 - 26304 - 6*384;
2976 = 2*11904 - 20256 - 6*96.
An alternate recurrence is illustrated by:
11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96);
20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384);
26304 = 20256 + 3*(636 + 744 + 636);
28536 = 26304 + 3*(744);
and then for k>n, T(n,k) = T(n,2n-k).
A126152
Main diagonal of symmetric triangle A126150: a(n) = A126150(n,n).
Original entry on oeis.org
1, 4, 36, 744, 28536, 1736064, 152914176, 18372559104, 2885671339776, 573765893121024, 140835811776316416, 41820352964911908864, 14774712204104658671616, 6124078747943873540112384
Offset: 0
-
/* Continued fraction involving even-indexed pentagonal numbers: */
{a(n)=local(CF=1+x*O(x),m,P); for(k=1, n,m=2*((n-k)\2+1);P=m*(3*m-1)/2-((n-k+1)%2); CF=1/(1-P*x*CF)); polcoeff(CF, n, x)}
for(n=0,20,print1(a(n),","))
A126153
Secondary diagonal of symmetric triangle A126150: a(n) = A126150(n+1,n).
Original entry on oeis.org
1, 24, 636, 26304, 1650456, 147705984, 17913816576, 2830553662464, 565108879101696, 139114514096953344, 41397845529582959616, 14649251145209922945024, 6079754611331559564097536
Offset: 0
A087736
Triangle T(n,k) read by rows given by [0, 1, 3, 6, 10, 15, 21, ...] DELTA [1, 3, 6, 10, 15, 21, 28,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 4, 0, 4, 23, 34, 0, 34, 249, 606, 496, 0, 496, 4354, 14181, 20434, 11056, 0, 11056, 112238, 450097, 894838, 885032, 349504, 0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 4;
0, 4, 23, 34;
0, 34, 249, 606, 496;
0, 496, 4354, 14181, 20434, 11056;
0, 11056, 112238, 450097, 894838, 885032, 349504;
0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104 ;...
Diagonals give
A002105: [1, 1, 4, 34, 496, ...] Row sums give
A000364 : [1, 1, 5, 61, 1385, ...] Euler numbers.
A366138
Triangle read by rows. T(n, k) = A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) for 0 < k < n. T(n, 0) = 1 and T(n, n) = T(n, n - 1) if n > 0.
Original entry on oeis.org
1, 1, 1, 1, 6, 6, 1, 18, 96, 96, 1, 40, 576, 2976, 2976, 1, 75, 2226, 29688, 151416, 151416, 1, 126, 6636, 175680, 2259576, 11449296, 11449296, 1, 196, 16632, 757800, 18931176, 238623408, 1204566336, 1204566336
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 6, 6;
[3] 1, 18, 96, 96;
[4] 1, 40, 576, 2976, 2976;
[5] 1, 75, 2226, 29688, 151416, 151416;
[6] 1, 126, 6636, 175680, 2259576, 11449296, 11449296;
[7] 1, 196, 16632, 757800, 18931176, 238623408, 1204566336, 1204566336;
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1)
else (((n - k + 1)*(3*n - 3*k + 2))/2) * T(n, k - 1) + T(n - 1, k) fi fi end:
seq(seq(T(n, k), k = 0..n), n = 0..8);
Showing 1-6 of 6 results.
Comments