A126152
Main diagonal of symmetric triangle A126150: a(n) = A126150(n,n).
Original entry on oeis.org
1, 4, 36, 744, 28536, 1736064, 152914176, 18372559104, 2885671339776, 573765893121024, 140835811776316416, 41820352964911908864, 14774712204104658671616, 6124078747943873540112384
Offset: 0
-
/* Continued fraction involving even-indexed pentagonal numbers: */
{a(n)=local(CF=1+x*O(x),m,P); for(k=1, n,m=2*((n-k)\2+1);P=m*(3*m-1)/2-((n-k+1)%2); CF=1/(1-P*x*CF)); polcoeff(CF, n, x)}
for(n=0,20,print1(a(n),","))
A126153
Secondary diagonal of symmetric triangle A126150: a(n) = A126150(n+1,n).
Original entry on oeis.org
1, 24, 636, 26304, 1650456, 147705984, 17913816576, 2830553662464, 565108879101696, 139114514096953344, 41397845529582959616, 14649251145209922945024, 6079754611331559564097536
Offset: 0
A126154
a(n) = Sum_{k=0..n} C(2n,k)*A126150(n,k).
Original entry on oeis.org
1, 10, 420, 38760, 6274320, 1574566560, 566087814720, 276000683679360, 175277074975269120, 140576092830146972160, 138951226585459200107520, 165951785120565606919464960, 235593066998837613695124049920
Offset: 0
a(1) = 1*(1) + 2*(4) + 1*(1) = 10;
a(2) = 1*(6) + 4*(24) + 6*(36) + 4*(24) + 1*(6) = 120;
a(3) = 1*(96) + 6*(384) + 15*(636) + 20*(744) + 15*(636) + 6*(384) + 1*(96) = 38760.
A126151
E.g.f.: ( (1 + cos(sqrt(6)*x))/2 )^(-1/3), showing coefficients of only the even powers of x.
Original entry on oeis.org
1, 1, 6, 96, 2976, 151416, 11449296, 1204566336, 168233625216, 30110372009856, 6719377991060736, 1829013279998846976, 596449130341224185856, 229556544889929225117696, 102956750031135241952280576, 53228316147100497514507862016, 31423560379886826670772937424896
Offset: 0
E.g.f.: A(x) = 1 + x^2/2! + 6*x^4/4! + 96*x^6/6! + 2976*x^8/8! + 151416*x^10/10! +...
where the logarithm begins:
log(A(x)) = x^2/2! + 3*x^4/4! + 36*x^6/6! + 918*x^8/8! + 40176*x^10/10! + 2686608*x^12/12! +...
compare the logarithm to
A(x)^3 = 1 + 3*x^2/! + 36*x^4/4! + 918*x^6/6! + 40176*x^8/8! + 2686608*x^10/10! +...
where A(x)^3 = 2/(1 + cos(sqrt(6)*x)).
-
A000326 := n -> n * (3 * n - 1) / 2;
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else A000326(n - k + 1) * T(n, k - 1) + T(n - 1, k) fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..16); # Peter Luschny, Sep 30 2023
-
terms = 18;
CoefficientList[((1 + Cos[Sqrt[6] x])/2)^(-3^(-1)) + O[x]^(2 terms), x] Range[0, 2 terms - 2]! // DeleteCases[#, 0]& (* Jean-François Alcover, Jul 26 2018 *)
-
/* Continued Fraction involving pentagonal numbers A000326: */
{a(n)=local(CF=1+x*O(x),m,P); for(k=1, n,m=n-k+1;P=m*(3*m-1)/2; CF=1/(1-P*x*CF)); polcoeff(CF, n, x)}
for(n=0,20,print1(a(n),","))
-
/* E.g.f. A(x) = exp( Integral^2 A(x)^3 dx^2 ): */
{a(n)=local(A=1+x*O(x)); for(i=1, n, A=exp(intformal(intformal(A^3 + x*O(x^(2*n))))) ); (2*n)!*polcoeff(A, 2*n, x)}
for(n=0,20,print1(a(n),", "))
-
/* E.g.f. A(x) = exp( Integral A(x)^(3/2) * Integral 1/A(x)^(3/2) dx dx ) */
{a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( A^(3/2) * intformal( 1/A^(3/2) + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
for(n=0,20,print1(a(2*n),", "))
A126155
Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 5 times first term.
Original entry on oeis.org
1, 1, 5, 1, 7, 35, 55, 35, 7, 139, 695, 1195, 1415, 1195, 695, 139, 5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, 5473, 357721, 1788605, 3175705, 4343885, 5126905, 5403005, 5126905, 4343885, 3175705, 1788605, 357721
Offset: 0
The triangle begins:
1;
1, 5, 1;
7, 35, 55, 35, 7;
139, 695, 1195, 1415, 1195, 695, 139;
5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, 5473;
357721, 1788605, 3175705, 4343885, 5126905, 5403005, 5126905, 4343885, 3175705, 1788605, 357721; ...
If we write the triangle like this:
.......................... ....1;
................... ....1, ....5, ....1;
............ ....7, ...35, ...55, ...35, ....7;
..... ..139, ..695, .1195, .1415, .1195, ..695, ..139;
.5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, .5473;
then the first term in each row is the sum of the previous row:
5473 = 139 + 695 + 1195 + 1415 + 1195 + 695 + 139
the next term is 5 times the first:
27365 = 5*5473,
and the remaining terms in each row are obtained by the rule illustrated by:
48145 = 2*27365 - 5473 - 8*139;
63365 = 2*48145 - 27365 - 8*695;
69025 = 2*63365 - 48145 - 8*1195;
63365 = 2*69025 - 63365 - 8*1415;
48145 = 2*63365 - 69025 - 8*1195;
27365 = 2*48145 - 63365 - 8*695;
5473 = 2*27365 - 48145 - 8*139.
An alternate recurrence is illustrated by:
27365 = 5473 + 4*(139 + 695 + 1195 + 1415 + 1195 + 695 + 139);
48145 = 27365 + 4*(695 + 1195 + 1415 + 1195 + 695);
63365 = 48145 + 4*(1195 + 1415 + 1195);
69025 = 63365 + 4*(1415);
and then for k>n, T(n,k) = T(n,2n-k).
-
T := proc(n,k) option remember; local j;
if n = 1 then 1
elif k = 1 then add(T(n-1, j), j=1..2*n-3)
elif k = 2 then 5*T(n, 1)
elif k > n then T(n, 2*n-k)
else 2*T(n, k-1)-T(n, k-2)-8*T(n-1, k-2)
fi end:
seq(print(seq(T(n,k), k=1..2*n-1)), n=1..6); # Peter Luschny, May 12 2014
-
T[n_, k_] := T[n, k] = Which[n==1, 1, k==1, Sum[T[n-1, j], {j, 1, 2n-3}], k==2, 5 T[n, 1], k>n, T[n, 2n-k], True, 2 T[n, k-1] - T[n, k-2] - 8 T[n-1, k-2]];
Table[T[n, k], {n, 1, 6}, {k, 1, 2n-1}] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
{T(n,k) = local(p=4);if(2*n
-
/* Alternate Recurrence: */
{T(n,k) = local(p=4);if(2*n
-
from functools import cache
@cache
def R(n, k):
return (1 if n == 1 else sum(R(n-1, j) for j in range(1, 2*n-2))
if k == 1 else 5*R(n, 1) if k == 2 else R(n, 2*n-k)
if k > n else 2*R(n, k-1) - R(n, k-2) - 8*R(n-1, k-2))
def A126155(n, k): return R(n+1, k+1)
for n in range(5): print([A126155(n, k) for k in range(2*n+1)])
# Peter Luschny, Dec 14 2023
Showing 1-5 of 5 results.
Comments