A126157
Main diagonal and central terms of symmetric triangle A126155.
Original entry on oeis.org
1, 5, 55, 1415, 69025, 5403005, 616437655, 96365988815, 19756766836225, 5140259013390005, 1654190282113104055, 645005323804145184215, 299613583126435893179425, 163464903833408195554809005
Offset: 0
A126158
Secondary diagonal of symmetric triangle A126155: a(n) = A126155(n+1,n).
Original entry on oeis.org
1, 35, 1195, 63365, 5126905, 594825635, 93900238195, 19371302880965, 5061231946045105, 1633629246059544035, 638388562675692767995, 297033561831219312442565, 162266449500902451982091305
Offset: 0
A126159
a(n) = Sum_{k=0..n} C(2n,k)*A126155(n,k).
Original entry on oeis.org
1, 12, 624, 72768, 15073536, 4879690752, 2275446779904, 1444596033404928, 1198103353905709056, 1257795823373397000192, 1630379271356490615619584, 2557344389023281412086693888, 4774145871907749099664809394176
Offset: 0
a(1) = 1*(1) + 2*(5) + 1*(1) = 12;
a(2) = 1*(7) + 4*(35) + 6*(55) + 4*(35) + 1*(7) = 624;
a(3) = 1*(139) + 6*(695) + 15*(1195) + 20*(1415) + 15*(1195) + 6*(695) + 1*(139) = 72768.
A126156
Expansion of e.g.f. sqrt(sec(sqrt(2)*x)), showing coefficients of only the even powers of x.
Original entry on oeis.org
1, 1, 7, 139, 5473, 357721, 34988647, 4784061619, 871335013633, 203906055033841, 59618325600871687, 21297483077038703899, 9127322584507530151393, 4621897483978366951337161, 2730069675607609356178641127, 1860452328661957054823447670979, 1448802510679254790311316267306753
Offset: 0
E.g.f.: A(x) = 1 + x^2/2! + 7*x^4/4! + 139*x^6/6! + 5473*x^8/8! + 357721*x^10/10! + ...
where the logarithm begins:
log(A(x)) = x^2/2! + 4*x^4/4! + 64*x^6/6! + 2176*x^8/8! + 126976*x^10/10! + 11321344*x^12/12! + ...
compare the logarithm to
A(x)^4 = 1 + 4*x^2/2! + 64*x^4/4! + 2176*x^6/6! + 126976*x^8/8! + 11321344*x^10/10! + ...
- H. S. Wall, Analytic Theory of Continued Fractions, Chelsea 1973, p. 366.
- G. C. Greubel, Table of n, a(n) for n = 0..200
- Peter Bala, A triangle for calculating A126156
- Alain Connes, Caterina Consani and Henri Moscovici, Zeta zeros and prolate wave operators, arXiv:2310.18423 [math.NT], Oct 2023, p.31.
- Denis S. Grebenkov, Vittoria Sposini, Ralf Metzler, Gleb Oshanin, and Flavio Seno, Exact distributions of the maximum and range of random diffusivity processes, New J. Phys. (2021) Vol. 23, 023014.
- Jitender Singh, On an arithmetic convolution, arXiv:1402.0065 [math.NT], 2014.
-
A126156 := proc(n)
sqrt(sec(sqrt(2)*z)) ;
coeftayl(%,z=0,2*n) ;
%*(2*n)! ;
end;
seq(A126156(n),n=0..10) ; # Sergei N. Gladkovskii, Oct 31 2011
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f,m)* g(f,n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> (-2)^n*g(euler, 2*n);
seq(a(n), n=0..14); # Peter Luschny, May 07 2014
# Alternative: an algorithm as described by Peter Bala, see also A365672:
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then
T(n, k-1) else (n - k + 1) * (2 * (n - k) + 1) * T(n, k - 1) + T(n - 1, k)
fi fi end:
a := n -> T(n, n): seq(a(n), n = 0..14); # Peter Luschny, Sep 29 2023
-
a[n_] := SeriesCoefficient[ Sqrt[ Sec[ Sqrt[2]*x]], {x, 0, 2 n}]*(2*n)!; Table[a[n], {n, 0, 14}] (* Jean-François Alcover, Nov 29 2013, after Sergei N. Gladkovskii *)
-
a(n):=if n=0 then 1 else 1/(4*n)*sum(binomial(2*n,2*k)*((2^(2*k)-1)*2^(3*k)*(-1)^((k-1))*bern(2*k)*a(n-k)),k,1,n); /* Vladimir Kruchinin, Feb 25 2015 */
-
a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(2*n,2*k)*(k/(2*n)-1)*(-2)^k,k,1,n);
makelist(a[n],n,0,30); /* Tani Akinari, Sep 11 2023 */
-
/* E.g.f. A(x) = exp( Integral^2 A(x)^4 dx^2 ): */
{a(n)=local(A=1+x*O(x)); for(i=1, n, A=exp(intformal(intformal(A^4 + x*O(x^(2*n))))) ); (2*n)!*polcoeff(A, 2*n, x)}
for(n=0,20,print1(a(n),", "))
-
{a(n) = local(A=1+x); for(i=1,n, A = exp( intformal( A^2 * intformal( 1/A^2 + x*O(x^n)) ) ) ); n!*polcoeff(A,n)}
for(n=0,20,print1(a(2*n),", "))
-
{a(n)=-(n<1)-sum(j=0,n,sum(k=0,j/2,(2*n+1)!*(2*k-j)^(2*n)/(n!*(2*j+1)*(n-j)!*k!*(j-k)!*(-2)^(n+j-1))))}; /* Tani Akinari, Sep 28 2023 */
-
def A126156(n): return A126155(n, 0)
print([A126156(n) for n in range(17)]) # Peter Luschny, Dec 14 2023
A126150
Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 4 times first term.
Original entry on oeis.org
1, 1, 4, 1, 6, 24, 36, 24, 6, 96, 384, 636, 744, 636, 384, 96, 2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976, 151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416, 11449296, 45797184
Offset: 0
Triangle begins:
1;
1, 4, 1;
6, 24, 36, 24, 6;
96, 384, 636, 744, 636, 384, 96;
2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, 2976;
151416, 605664, 1042056, 1407024, 1650456, 1736064, 1650456, 1407024, 1042056, 605664, 151416; ...
If we write the triangle like this:
.......................... ....1;
................... ....1, ....4, ....1;
............ ....6, ...24, ...36, ...24, ....6;
..... ...96, ..384, ..636, ..744, ..636, ..384, ...96;
.2976, 11904, 20256, 26304, 28536, 26304, 20256, 11904, .2976;
then the first term in each row is the sum of the previous row:
2976 = 96 + 384 + 636 + 744 + 636 + 384 + 96
the next term is 4 times the first:
11904 = 4*2976,
and the remaining terms in each row are obtained by the rule illustrated by:
20256 = 2*11904 - 2976 - 6*96;
26304 = 2*20256 - 11904 - 6*384;
28536 = 2*26304 - 20256 - 6*636;
26304 = 2*28536 - 26304 - 6*744;
20256 = 2*26304 - 28536 - 6*636;
11904 = 2*20256 - 26304 - 6*384;
2976 = 2*11904 - 20256 - 6*96.
An alternate recurrence is illustrated by:
11904 = 2976 + 3*(96 + 384 + 636 + 744 + 636 + 384 + 96);
20256 = 11904 + 3*(384 + 636 + 744 + 636 + 384);
26304 = 20256 + 3*(636 + 744 + 636);
28536 = 26304 + 3*(744);
and then for k>n, T(n,k) = T(n,2n-k).
Showing 1-5 of 5 results.
Comments