A241885
Write the coefficient of x^n/n! in the expansion of (x/(exp(x)-1))^(1/2) as f(n)/g(n); sequence gives f(n).
Original entry on oeis.org
1, -1, 1, 1, -3, -19, 79, 275, -2339, -11813, 14217, 95265, -4634445, -193814931, 131301607, 1315505395, -3890947599, -136146236611, 46949081169401, 124889801445461, -10635113572583999, -158812278992229461, 56918172351554857, 8484151253958927197
Offset: 0
For n=1, B_1=-1/2 and B_1^(1/2)=-1/4 so a(1)=-1.
For n=6, B_6=1/6 and B_6^(1/2)=79/86016 so a(6)=79.
1/1, -1/4, 1/48, 1/64, -3/1280, -19/3072, 79/86016, 275/49152, -2339/2949120, -11813/1310720, 14217/11534336 = A241885 / A242225.
-
g := proc(f, n) option remember; local g0, m; g0 := sqrt(f(0));
if n=0 then g0 else if n=1 then 0 else add(binomial(n, m)*g(f,m)*g(f,n-m), m=1..n-1) fi; (f(n)-%)/(2*g0) fi end:
a := n -> numer(g(bernoulli, n));
seq(a(n), n = 0..23); # Peter Luschny, May 07 2014
-
a := 1
g[0] := Sqrt[f[0]]
f[k_] := BernoulliB[k]
g[1] := f[1]/(2 g[0]^1);
g[k_] := (f[k] - Sum[Binomial[k, m] g[m] g[k - m], {m, 1, k - 1}])/(2 g[0])
Table[Factor[g[k]], {k, 0, 15}] // TableForm
(* Alternative: *)
Table[Numerator@NorlundB[n, 1/2, 0], {n, 0, 23}] (* Peter Luschny, Feb 18 2024 *)
-
a(n)=numerator(sum(k=0,n,binomial(-1/2,k)*binomial(n+1/2,n-k)*stirling(n+k,k,2)/binomial(n+k,k))) \\ Tani Akinari, Oct 08 2024
A126155
Symmetric triangle, read by rows of 2*n+1 terms, similar to triangle A008301. Second term 5 times first term.
Original entry on oeis.org
1, 1, 5, 1, 7, 35, 55, 35, 7, 139, 695, 1195, 1415, 1195, 695, 139, 5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, 5473, 357721, 1788605, 3175705, 4343885, 5126905, 5403005, 5126905, 4343885, 3175705, 1788605, 357721
Offset: 0
The triangle begins:
1;
1, 5, 1;
7, 35, 55, 35, 7;
139, 695, 1195, 1415, 1195, 695, 139;
5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, 5473;
357721, 1788605, 3175705, 4343885, 5126905, 5403005, 5126905, 4343885, 3175705, 1788605, 357721; ...
If we write the triangle like this:
.......................... ....1;
................... ....1, ....5, ....1;
............ ....7, ...35, ...55, ...35, ....7;
..... ..139, ..695, .1195, .1415, .1195, ..695, ..139;
.5473, 27365, 48145, 63365, 69025, 63365, 48145, 27365, .5473;
then the first term in each row is the sum of the previous row:
5473 = 139 + 695 + 1195 + 1415 + 1195 + 695 + 139
the next term is 5 times the first:
27365 = 5*5473,
and the remaining terms in each row are obtained by the rule illustrated by:
48145 = 2*27365 - 5473 - 8*139;
63365 = 2*48145 - 27365 - 8*695;
69025 = 2*63365 - 48145 - 8*1195;
63365 = 2*69025 - 63365 - 8*1415;
48145 = 2*63365 - 69025 - 8*1195;
27365 = 2*48145 - 63365 - 8*695;
5473 = 2*27365 - 48145 - 8*139.
An alternate recurrence is illustrated by:
27365 = 5473 + 4*(139 + 695 + 1195 + 1415 + 1195 + 695 + 139);
48145 = 27365 + 4*(695 + 1195 + 1415 + 1195 + 695);
63365 = 48145 + 4*(1195 + 1415 + 1195);
69025 = 63365 + 4*(1415);
and then for k>n, T(n,k) = T(n,2n-k).
-
T := proc(n,k) option remember; local j;
if n = 1 then 1
elif k = 1 then add(T(n-1, j), j=1..2*n-3)
elif k = 2 then 5*T(n, 1)
elif k > n then T(n, 2*n-k)
else 2*T(n, k-1)-T(n, k-2)-8*T(n-1, k-2)
fi end:
seq(print(seq(T(n,k), k=1..2*n-1)), n=1..6); # Peter Luschny, May 12 2014
-
T[n_, k_] := T[n, k] = Which[n==1, 1, k==1, Sum[T[n-1, j], {j, 1, 2n-3}], k==2, 5 T[n, 1], k>n, T[n, 2n-k], True, 2 T[n, k-1] - T[n, k-2] - 8 T[n-1, k-2]];
Table[T[n, k], {n, 1, 6}, {k, 1, 2n-1}] (* Jean-François Alcover, Jun 15 2019, from Maple *)
-
{T(n,k) = local(p=4);if(2*n
-
/* Alternate Recurrence: */
{T(n,k) = local(p=4);if(2*n
-
from functools import cache
@cache
def R(n, k):
return (1 if n == 1 else sum(R(n-1, j) for j in range(1, 2*n-2))
if k == 1 else 5*R(n, 1) if k == 2 else R(n, 2*n-k)
if k > n else 2*R(n, k-1) - R(n, k-2) - 8*R(n-1, k-2))
def A126155(n, k): return R(n+1, k+1)
for n in range(5): print([A126155(n, k) for k in range(2*n+1)])
# Peter Luschny, Dec 14 2023
A185417
Table of coefficients of a polynomial sequence related to the Springer numbers.
Original entry on oeis.org
1, 1, 2, 3, 4, 4, 11, 26, 12, 8, 57, 120, 136, 32, 16, 361, 970, 760, 560, 80, 32, 2763, 7052, 8860, 3680, 2000, 192, 64, 24611, 72530, 72884, 58520, 15120, 6496, 448, 128, 250737, 716528, 976464, 538048, 314720, 55552, 19712, 1024, 256
Offset: 1
Table begin
n\k|.....0.....1.....2.....3.....4.....5......6
===============================================
0..|.....1
1..|.....1.....2
2..|.....3.....4.....4
3..|....11....26....12.....8
4..|....57...120...136....32...16
5..|...361...970...760...560...80.....32
6..|..2763..7052..8860..3680..2000...192....64
...
-
#A185417
S := proc(n,x) option remember;
description 'polynomials S(n,x)'
if n = 0 return 1 else return x*S(n-1,x-1)+(x+1)*S(n-1,x+1)
end proc:
with(PolynomialTools):
for n from 1 to 10 CoefficientList(S(n,x),x); end do;
-
S[0, ] = 1; S[n, x_] := S[n, x] = x*S[n-1, x-1] + (x+1)*S[n-1, x+1]; Table[ CoefficientList[S[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 15 2015 *)
A365673
Array A(n, k) read by ascending antidiagonals. Polygonal number weighted generalized Catalan sequences.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 4, 1, 1, 1, 4, 15, 8, 1, 1, 1, 5, 34, 105, 16, 1, 1, 1, 6, 61, 496, 945, 32, 1, 1, 1, 7, 96, 1385, 11056, 10395, 64, 1, 1, 1, 8, 139, 2976, 50521, 349504, 135135, 128, 1, 1, 1, 9, 190, 5473, 151416, 2702765, 14873104, 2027025, 256, 1
Offset: 0
Array A(n, k) starts: (polygon|diagonal|triangle)
[0] 1, 1, 1, 1, 1, 1, 1, ... A258837 A000012
[1] 1, 1, 2, 4, 8, 16, 32, ... A080956 A011782
[2] 1, 1, 3, 15, 105, 945, 10395, ... A001477 A001147 A001498
[3] 1, 1, 4, 34, 496, 11056, 349504, ... A000217 A002105 A365674
[4] 1, 1, 5, 61, 1385, 50521, 2702765, ... A000290 A000364 A060058
[5] 1, 1, 6, 96, 2976, 151416, 11449296, ... A000326 A126151 A366138
[6] 1, 1, 7, 139, 5473, 357721, 34988647, ... A000384 A126156 A365672
[7] 1, 1, 8, 190, 9080, 725320, 87067520, ... A000566 A366150 A366149
[8] 1, 1, 9, 249, 14001, 1322001, 188106489, ... A000567
A054556 A366137
-
poly := (s, n) -> ((s - 2) * n^2 - (s - 4) * n) / 2:
T := proc(s, n, k) option remember; if k = 0 then 1 else if k = n then T(s, n, k-1) else poly(s, n - k + 1) * T(s, n, k - 1) + T(s, n - 1, k) fi fi end:
for n from 0 to 8 do A := (n, k) -> T(n, k, k): seq(A(n, k), k = 0..9) od;
# Alternative, using continued fractions:
A := proc(p, L) local CF, poly, k, m, P, ser;
poly := (s, n) -> ((s - 2)*n^2 - (s - 4)*n)/2;
CF := 1 + x;
for k from 1 to L do
m := L - k + 1;
P := poly(p, m);
CF := 1/(1 - P*x*CF)
od;
ser := series(CF, x, L);
seq(coeff(ser, x, m), m = 0..L-1)
end:
for p from 0 to 8 do lprint(A(p, 8)) od;
-
poly[s_, n_] := ((s - 2) * n^2 - (s - 4) * n) / 2;
T[s_, n_, k_] := T[s, n, k] = If[k == 0, 1, If[k == n, T[s, n, k - 1], poly[s, n - k + 1] * T[s, n, k - 1] + T[s, n - 1, k]]];
A[n_, k_] := T[n, k, k];
Table[A[n - k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Nov 27 2023, from first Maple program *)
-
A(p, n) = {
my(CF = 1 + x,
poly(s, n) = ((s - 2)*n^2 - (s - 4)*n)/2,
m, P
);
for(k = 1, n,
m = n - k + 1;
P = poly(p, m);
CF = 1/(1 - P*x*CF)
);
Vec(CF + O(x^(n)))
}
for(p = 0, 8, print(A(p, 8)))
\\ Michel Marcus and Peter Luschny, Oct 02 2023
-
from functools import cache
@cache
def T(s, n, k):
if k == 0: return 1
if k == n: return T(s, n, k - 1)
p = (n - k + 1) * ((s - 2) * (n - k + 1) - (s - 4)) // 2
return p * T(s, n, k - 1) + T(s, n - 1, k)
def A(n, k): return T(n, k, k)
for n in range(9): print([A(n, k) for k in range(9)])
A126157
Main diagonal and central terms of symmetric triangle A126155.
Original entry on oeis.org
1, 5, 55, 1415, 69025, 5403005, 616437655, 96365988815, 19756766836225, 5140259013390005, 1654190282113104055, 645005323804145184215, 299613583126435893179425, 163464903833408195554809005
Offset: 0
A126158
Secondary diagonal of symmetric triangle A126155: a(n) = A126155(n+1,n).
Original entry on oeis.org
1, 35, 1195, 63365, 5126905, 594825635, 93900238195, 19371302880965, 5061231946045105, 1633629246059544035, 638388562675692767995, 297033561831219312442565, 162266449500902451982091305
Offset: 0
A261042
Generating function g(0) where g(k) = 1 - x*2*(k+1)*(k+2)/(x*2*(k+1)*(k+2) - 1/g(k+1)).
Original entry on oeis.org
1, 4, 64, 2176, 126976, 11321344, 1431568384, 243680935936, 53725527801856, 14893509177769984, 5070334006399074304, 2079588119566033616896, 1011390382859091900891136, 575501120339508919401447424, 378784713733072451034702413824, 285539131625477547496925147693056
Offset: 0
-
eulerCF := proc(f, len) local g, k; g := 1;
for k from len-2 by -1 to 0 do g := 1 - f(k)/(f(k)-1/g) od;
PolynomialTools:-CoefficientList(convert(series(g, x, len), polynom), x) end:
A261042_list := len -> eulerCF(k -> x*2*(k+1)*(k+2), len): A261042_list(16);
# Alternative:
ser := series(cos(x/sqrt(2))^(-2), x, 32):
seq(2^(2*n)*(2*n)!*coeff(ser, x, 2*n), n = 0..15); # Peter Luschny, Sep 03 2022
-
fracGen[f_, len_] := Module[{g, k}, g[len] = 1; For[k = len-1, k >= 0, k--, g[k] = 1-f[k]/(f[k]-1/g[k+1])]; CoefficientList[g[0] + O[x]^(len+1), x] ]; A261042list[len_] := fracGen[x*2*(#+1)*(#+2)&, len-1]; A261042list[16] (* Jean-François Alcover, Aug 08 2015, after Peter Luschny *)
-
def A261042_list(len):
f = lambda k: x*2*(k+1)*(k+2)
g = 1
for k in range(len-2,-1,-1):
g = (1-f(k)/(f(k)-1/g)).simplify_rational()
return taylor(g, x, 0, len-1).list()
A261042_list(16)
A087736
Triangle T(n,k) read by rows given by [0, 1, 3, 6, 10, 15, 21, ...] DELTA [1, 3, 6, 10, 15, 21, 28,...] where DELTA is the operator defined in A084938.
Original entry on oeis.org
1, 0, 1, 0, 1, 4, 0, 4, 23, 34, 0, 34, 249, 606, 496, 0, 496, 4354, 14181, 20434, 11056, 0, 11056, 112238, 450097, 894838, 885032, 349504, 0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 4;
0, 4, 23, 34;
0, 34, 249, 606, 496;
0, 496, 4354, 14181, 20434, 11056;
0, 11056, 112238, 450097, 894838, 885032, 349504;
0, 349504, 4008024, 18911670, 47136095, 65613780, 48468804, 14873104 ;...
Diagonals give
A002105: [1, 1, 4, 34, 496, ...] Row sums give
A000364 : [1, 1, 5, 61, 1385, ...] Euler numbers.
A186491
Counts a family of permutations occurring in the study of squeezed states of the simple harmonic oscillator.
Original entry on oeis.org
1, 2, 28, 1112, 87568, 11447072, 2239273408, 612359887232, 223061763490048, 104399900177326592, 61049165415292607488, 43617245341775265585152, 37385513306142843500105728, 37862584188750782065354022912
Offset: 0
a(1)=2:
The two permutations in Symm(4) satisfying the conditions are
... (13)(24) of type AADD
... (14)(23) of type AADD.
a(2)=28:
Clearly, the ascent-descent structure of one of our permutations must start with an AA and finish with a DD so the two possible types are AAAADDDD and AADDAADD.
There are 4!=24 permutations of type AAAADDDD coming from the bijections of {1,2,3,4} onto {5,6,7,8}.
There are 2*2 = 4 permutations of the remaining type AADDAADD, namely
... (13)(24)(57)(68)
... (13)(24)(58)(67)
... (14)(23)(57)(68)
... (14)(23)(58)(67).
-
G:= sqrt(sec(2*x)): Gser := series(G, x = 0,32):
seq((2*n)!*coeff(Gser,x^(2*n)), n = 1..15);
# Alternative, using the Singh transformation 'g' from Maple in A126156:
a := n -> (-4)^n*g(euler, 2*n);
seq(a(n), n = 0..13); # Peter Luschny, Sep 29 2023
-
a[n]:=if n=0 then 1 else sum(a[n-k]*binomial(2*n,2*k)*(k/(2*n)-1)*(-4)^k,k,1,n);
makelist(a[n],n,0,20); /* Tani Akinari, Sep 19 2023 */
A365672
Triangle read by rows. T(n, k) = 1 if k = 0, equals T(n, k-1) if k = n, and otherwise is (n - k + 1) * (2 * (n - k) + 1) * T(n, k - 1) + T(n - 1, k).
Original entry on oeis.org
1, 1, 1, 1, 7, 7, 1, 22, 139, 139, 1, 50, 889, 5473, 5473, 1, 95, 3549, 58708, 357721, 357721, 1, 161, 10794, 360940, 5771821, 34988647, 34988647, 1, 252, 27426, 1595110, 50434901, 791512162, 4784061619, 4784061619
Offset: 0
Triangle T(n, k) starts:
[0] 1;
[1] 1, 1;
[2] 1, 7, 7;
[3] 1, 22, 139, 139;
[4] 1, 50, 889, 5473, 5473;
[5] 1, 95, 3549, 58708, 357721, 357721;
[6] 1, 161, 10794, 360940, 5771821, 34988647, 34988647;
[7] 1, 252, 27426, 1595110, 50434901, 791512162, 4784061619, 4784061619;
-
T := proc(n, k) option remember; if k = 0 then 1 else if k = n then T(n, k-1) else (n - k + 1) * (2 * (n - k) + 1) * T(n, k - 1) + T(n - 1, k) fi fi end:
Showing 1-10 of 12 results.
Comments