cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001586 Generalized Euler numbers, or Springer numbers.

Original entry on oeis.org

1, 1, 3, 11, 57, 361, 2763, 24611, 250737, 2873041, 36581523, 512343611, 7828053417, 129570724921, 2309644635483, 44110959165011, 898621108880097, 19450718635716001, 445777636063460643, 10784052561125704811, 274613643571568682777, 7342627959965776406281
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Feb 02 2011: (Start)
The Springer numbers were originally considered by Glaisher (see references). They are a type B analog of the zigzag numbers A000111 for the group of signed permutations.
COMBINATORIAL INTERPRETATIONS
Several combinatorial interpretations of the Springer numbers are known:
1) a(n) gives the number of Weyl chambers in the principal Springer cone of the Coxeter group B_n of symmetries of an n dimensional cube. An example can be found in [Arnold - The Calculus of snakes...].
2) Arnold found an alternative combinatorial interpretation of the Springer numbers in terms of snakes. Snakes are a generalization of alternating permutations to the group of signed permutations. A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube. A snake of type B_n is a signed permutation (x_1,x_2,...,x_n) such that 0 < x_1 > x_2 < ... x_n. For example, (3,-4,-2,-5,1,-6) is a snake of type B_6. a(n) gives the number of snakes of type B_n [Arnold]. The cases n=2 and n=3 are given in the Example section below.
3) The Springer numbers also arise in the study of the critical points of functions; they count the topological types of odd functions with 2*n critical values [Arnold, Theorem 35].
4) Let F_n be the set of plane rooted forests satisfying the following conditions:
... each root has exactly one child, and each of the other internal nodes has exactly two (ordered) children,
... there are n nodes labeled by integers from 1 to n, but some leaves can be non-labeled (these are called empty leaves), and labels are increasing from each root down to the leaves. Then a(n) equals the cardinality of F_n. An example and proof are given in [Verges, Theorem 4.5].
OTHER APPEARANCES OF THE SPRINGER NUMBERS
1) Hoffman has given a connection between Springer numbers, snakes and the successive derivatives of the secant and tangent functions.
2) For integer N the quarter Gauss sums Q(N) are defined by ... Q(N) := Sum_{r = 0..floor(N/4)} exp(2*Pi*I*r^2/N). In the cases N = 1 (mod 4) and N = 3 (mod 4) an asymptotic series for Q(N) as N -> inf that involves the Springer numbers has been given by Evans et al., see 1.32 and 1.33.
For a sequence of polynomials related to the Springer numbers see A185417. For a table to recursively compute the Springer numbers see A185418.
(End)
Similar to the way in which the signed Euler numbers A122045 are 2^n times the value of the Euler polynomials at 1/2, the generalized signed Euler numbers A188458 can be seen as 2^n times the value of generalized Euler polynomials at 1/2. These are the Swiss-Knife polynomials A153641. A recursive definition of these polynomials is given in A081658. - Peter Luschny, Jul 19 2012
a(n) is the number of reverse-complementary updown permutations of [2n]. For example, the updown permutation 241635 is reverse-complementary because its complement is 536142, which is the same as its reverse, and a(2)=3 counts 1324, 2413, 3412. - David Callan, Nov 29 2012
a(n) = |2^n G(n,1/2;-1)|, a specialization of the Appell sequence of polynomials umbrally formed by G(n,x;t) = (G(.,0;t) + x)^n from the Grassmann polynomials G(n,0;t) of A046802 enumerating the cells of the positive Grassmannians. - Tom Copeland, Oct 14 2015
Named "Springer numbers" after the Dutch mathematician Tonny Albert Springer (1926-2011). - Amiram Eldar, Jun 13 2021

Examples

			a(2) = 3: The three snakes of type B_2 are
  (1,-2), (2,1), (2,-1).
a(3) = 11: The 11 snakes of type B_3 are
  (1,-2,3), (1,-3,2), (1,-3,-2),
  (2,1,3), (2,-1,3), (2,-3,1), (2,-3,-1),
  (3,1,2), (3,-1,2), (3,-2,1), (3,-2,-1).
		

References

  • V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom., Vol. 1, No. 2 (1992), pp. 197-214.
  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x/cos 2x and sin x/cos 2x", Quart. J. Pure and Applied Math., Vol. 45 (1914), pp. 187-222.
  • J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., Vol. 29 (1898), pp. 1-168.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Tonny Albert Springer, Remarks on a combinatorial problem, Nieuw Arch. Wisk., Vol. 19, No. 3 (1971), pp. 30-36.

Crossrefs

Row 2 of A349271.
Bisections are A000281 and A000464. Overview in A349264.
Related polynomials are given in A098432, A081658 and A153641.
Cf. A046802.

Programs

  • Maple
    a := proc(n) local k; (-1)^iquo(n,2)*add(2^k*binomial(n,k)*euler(k),k=0..n) end; # Peter Luschny, Jul 08 2009
    a := n -> (-1)^(n+iquo(n,2))*2^(3*n+1)*(Zeta(0,-n,1/8) - Zeta(0,-n,5/8)):
    seq(a(n),n=0..21); # Peter Luschny, Mar 11 2015
  • Mathematica
    n=21; CoefficientList[Series[1/(Cos[x]-Sin[x]), {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *)
    Table[Abs[Numerator[EulerE[n,1/4]]],{n,0,35}] (* Harvey P. Dale, May 18 2011 *)
  • PARI
    {a(n) = if(n<0, 0, n! * polcoeff( 1 / (cos(x + x * O(x^n)) - sin(x + x * O(x^n))), n))}; /* Michael Somos, Feb 03 2004 */
    
  • PARI
    {a(n) = my(an); if(n<2, n>=0, an = vector(n+1, m, 1); for(m=2, n, an[m+1] = 2*an[m] + an[m-1] + sum(k=0, m-3, binomial(m-2, k) * (an[k+1] * an[m-1-k] + 2*an[k+2] * an[m-k] - an[k+3] * an[m-1-k]))); an[n+1])}; /* Michael Somos, Feb 03 2004 */
    
  • PARI
    /* Explicit formula by Peter Bala: */
    {a(n)=((1+I)/2)^n*sum(k=0,n,((1-I)/(1+I))^k*sum(j=0,k,(-1)^(k-j)*binomial(n+1,k-j)*(2*j+1)^n))}
    
  • Sage
    @CachedFunction
    def p(n,x) :
        if n == 0 : return 1
        w = -1 if n%2 == 0 else 0
        v =  1 if n%2 == 0 else -1
        return v*add(p(k,0)*binomial(n,k)*(x^(n-k)+w) for k in range(n)[::2])
    def A001586(n) : return abs(2^n*p(n, 1/2))
    [A001586(n) for n in (0..21)] # Peter Luschny, Jul 19 2012

Formula

E.g.f.: 1/(cos(x) - sin(x)).
Values at 1 of polynomials Q_n() defined in A104035. - N. J. A. Sloane, Nov 06 2009
a(n) = numerator of abs(Euler(n,1/4)). - N. J. A. Sloane, Nov 07 2009
Let B_n(x) = Sum_{k=0.. n*(n-1)/2} b(n,k)*x^k, where b(n,k) is number of n-node acyclic digraphs with k arcs, cf. A081064; then a(n) = |B_n(-2)|. - Vladeta Jovovic, Jan 25 2005
G.f. A(x) = y satisfies y'^2 = 2y^4 - y^2, y''y = y^2 + 2y'^2. - Michael Somos, Feb 03 2004
a(n) = (-1)^floor(n/2) Sum_{k=0..n} 2^k C(n,k) Euler(k). - Peter Luschny, Jul 08 2009
From Peter Bala, Feb 02 2011: (Start)
(1)... a(n) = ((1 + i)/2)^n*B(n,(1 - i)/(1 + i)), where i = sqrt(-1) and {B(n,x)}n>=0 = [1, 1 + x, 1 + 6*x + x^2, 1 + 23*x + 23*x^2 + x^3, ...] is the sequence of type B Eulerian polynomials - see A060187.
This yields the explicit formula
(2)... a(n) = ((1 + i)/2)^n*Sum_{k = 0..n} ((1 - i)/(1 + i))^k * Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(2*j + 1)^n.
The result (2) can be used to find congruences satisfied by the Springer numbers. For example, for odd prime p
(3)
... a(p) = 1 (mod p) when p = 4*n + 1
... a(p) = -1 (mod p) when p = 4*n + 3.
(End)
E.g.f.: 1/Q(0) where Q(k) = 1 - x/((2k+1)-x*(2k+1)/(x+(2k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2011
E.g.f.: 2/U(0) where U(k) = 1 + 1/(1 + x/(2*k + 1 -x - (2*k+1)/(2 - x/(x+ (2*k+2)/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Sep 24 2012
E.g.f.: 1/G(0) where G(k) = 1 - x/(4*k+1 - x*(4*k+1)/(4*k+2 + x + x*(4*k+2)/(4*k+3 - x - x*(4*k+3)/(x + (4*k+4)/G(k+1) )))); (continued fraction, 3rd kind, 5-step). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+1) - 2*x^2*(k+1)*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013
a(n) = | 2*4^n*lerchphi(-1, -n, 1/4) |. - Peter Luschny, Apr 27 2013
a(n) ~ 4 * n^(n+1/2) * (4/Pi)^n / (sqrt(Pi)*exp(n)). - Vaclav Kotesovec, Oct 07 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/( 2*x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 15 2013
a(n) = (-1)^C(n+1,2)*2^(3*n+1)*(Zeta(-n,1/8)-Zeta(-n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
E.g.f. A(x) satisfies: A(x) = exp( Integral A(x)/A(-x) dx ). - Paul D. Hanna, Feb 04 2017
E.g.f. A(x) satisfies: A'(x) = A(x)^2/A(-x). - Paul D. Hanna, Feb 04 2017

Extensions

More terms from Vladeta Jovovic, Jan 25 2005

A147309 Riordan array [sec(x), log(sec(x) + tan(x))].

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 0, 4, 0, 1, 5, 0, 10, 0, 1, 0, 40, 0, 20, 0, 1, 61, 0, 175, 0, 35, 0, 1, 0, 768, 0, 560, 0, 56, 0, 1, 1385, 0, 4996, 0, 1470, 0, 84, 0, 1, 0, 24320, 0, 22720, 0, 3360, 0, 120, 0, 1
Offset: 0

Views

Author

Paul Barry, Nov 05 2008

Keywords

Comments

Production array is [cosh(x),x] beheaded. Inverse is A147308. Row sums are A000111(n+1).
Unsigned version of A147308. - N. J. A. Sloane, Nov 07 2008
From Peter Bala, Jan 26 2011: (Start)
Define a polynomial sequence {Z(n,x)} n >= 0 by means of the recursion
(1)... Z(n+1,x) = 1/2*x*{Z(n,x-1)+Z(n,x+1)}
with starting condition Z(0,x) = 1. We call Z(n,x) the zigzag polynomial of degree n. This table lists the coefficients of these polynomials (for n >= 1) in ascending powers of x, row indices shifted by 1. The first few polynomials are
... Z(1,x) = x
... Z(2,x) = x^2
... Z(3,x) = x + x^3
... Z(4,x) = 4*x^2 + x^4
... Z(5,x) = 5*x + 10*x^3 + x^5.
The value Z(n,1) equals the zigzag number A000111(n). The polynomials Z(n,x) occur in formulas for the enumeration of permutations by alternating descents A145876 and in the enumeration of forests of non-plane unary binary labeled trees A147315.
{Z(n,x)}n>=0 is a polynomial sequence of binomial type and so is analogous to the sequence of monomials x^n. Denoting Z(n,x) by x^[n] to emphasize this analogy, we have, for example, the following analog of Bernoulli's formula for the sum of integer powers:
(2)... 1^[m]+...+(n-1)^[m] = (1/(m+1))*Sum_{k=0..m} (-1)^floor(k/2)*binomial(m+1,k)*B_k*n^[m+1-k],
where {B_k} k >= 0 = [1, -1/2, 1/6, 0, -1/30, ...] is the sequence of Bernoulli numbers.
For similarly defined polynomial sequences to Z(n,x) see A185415, A185417 and A185419. See also A185424.
(End)
[gd(x)^(-1)]^m = Sum_{n>=m} Tg(n,m)*(m!/n!)*x^n, where gd(x) is Gudermannian function, Tg(n+1,m+1)=T(n,m). - Vladimir Kruchinin, Dec 18 2011
The Bell transform of abs(E(n)), E(n) the Euler numbers. For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
   1;
   0,  1;
   1,  0,   1;
   0,  4,   0,  1;
   5,  0,  10,  0,  1;
   0, 40,   0, 20,  0, 1;
  61,  0, 175,  0, 35, 0, 1;
		

Crossrefs

Programs

  • Maple
    Z := proc(n, x) option remember;
    description 'zigzag polynomials Z(n, x)'
    if n = 0 return 1 else return 1/2*x*(Z(n-1, x-1)+Z(n-1, x+1)) end proc:
    with(PolynomialTools):
    for n from 1 to 10 CoefficientList(Z(n, x), x); end do; # Peter Bala, Jan 26 2011
  • Mathematica
    t[n_, k_] := SeriesCoefficient[ 2^k*ArcTan[(E^x - 1)/(E^x + 1)]^k*n!/k!, {x, 0, n}]; Table[t[n, k], {n, 1, 10}, {k, 1, n}] // Flatten // Abs (* Jean-François Alcover, Jan 23 2015 *)
  • PARI
    T(n, k)=local(X); if(k<1 || k>n, 0, X=x+x*O(x^n); n!*polcoeff(polcoeff((tan(X)+1/cos(X))^y, n), k)) \\ Paul D. Hanna, Feb 06 2011
    
  • Sage
    R = PolynomialRing(QQ, 'x')
    @CachedFunction
    def zzp(n, x) :
        return 1 if n == 0 else x*(zzp(n-1, x-1)+zzp(n-1, x+1))/2
    def A147309_row(n) :
        x = R.gen()
        L = list(R(zzp(n, x)))
        del L[0]
        return L
    for n in (1..10) : print(A147309_row(n)) # Peter Luschny, Jul 22 2012
    
  • Sage
    # uses[bell_matrix from A264428]
    # Alternative: Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: abs(euler_number(n)), 10) # Peter Luschny, Jan 18 2016

Formula

From Peter Bala, Jan 26 2011: (Start)
GENERATING FUNCTION
The e.g.f., upon including a constant term of '1', is given by:
(1) F(x,t) = (tan(t) + sec(t))^x = Sum_{n>=0} Z(n,x)*t^n/n! = 1 + x*t + x^2*t^2/2! + (x+x^3)*t^3/3! + ....
Other forms include
(2) F(x,t) = exp(x*arcsinh(tan(t))) = exp(2*x*arctanh(tan(t/2))).
(3) F(x,t) = exp(x*(t + t^3/3! + 5*t^5/5! + 61*t^7/7! + ...)),
where the coefficients [1,1,5,61,...] are the secant or zig numbers A000364.
ROW GENERATING POLYNOMIALS
One easily checks from (1) that
d/dt(F(x,t)) = 1/2*x*(F(x-1,t) + F(x+1,t))
and so the row generating polynomials Z(n,x) satisfy the recurrence relation
(4) Z(n+1,x) = 1/2*x*{Z(n,x-1) + Z(n,x+1)}.
The e.g.f. for the odd-indexed row polynomials is
(5) sinh(x*arcsinh(tan(t))) = Sum_{n>=0} Z(2n+1,x)*t^(2n+1)/(2n+1)!.
The e.g.f. for the even-indexed row polynomials is
(6) cosh(x*arcsinh(tan(t))) = Sum_{n>=0} Z(2n,x)*t^(2n)/(2n)!.
From sinh(2*x) = 2*sinh(x)*cosh(x) we obtain the identity
(7) Z(2n+1,2*x) = 2*Sum_{k=0..n} binomial(2n+1,2k)*Z(2k,x)*Z(2n-2k+1,x).
The zeros of Z(n,x) lie on the imaginary axis (use (4) and adapt the proof given in A185417 for the zeros of the polynomial S(n,x)).
BINOMIAL EXPANSION
The form of the e.g.f. shows that {Z(n,x)} n >= 0 is a sequence of polynomials of binomial type. In particular, we have the expansion
(8) Z(n,x+y) = Sum_{k=0..n} binomial(n,k)*Z(k,x)*Z(n-k,y).
The delta operator D* associated with this binomial type sequence is
(9) D* = D - D^3/3! + 5*D^5/5! - 61*D^7/7! + 1385*D^9/9! - ..., and satisfies
the relation
(10) tan(D*)+sec(D*) = exp(D).
The delta operator D* acts as a lowering operator on the zigzag polynomials:
(11) (D*)Z(n,x) = n*Z(n-1,x).
ANALOG OF THE LITTLE FERMAT THEOREM
For integer x and odd prime p
(12) Z(p,x) = (-1)^((p-1)/2)*x (mod p).
More generally, for k = 1,2,3,...
(13) Z(p+k-1,x) = (-1)^((p-1)/2)*Z(k,x) (mod p).
RELATIONS WITH OTHER SEQUENCES
Row sums [1,1,2,5,16,61,...] are the zigzag numbers A000111(n) for n >= 1.
Column 1 (with 0's omitted) is the sequence of Euler numbers A000364.
A145876(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(n+1,k-j)*Z(n,j).
A147315(n-1,k-1) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*Z(n,j).
A185421(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*Z(n,j).
A012123(n) = (-i)^n*Z(n,i) where i = sqrt(-1). A012259(n) = 2^n*Z(n,1/2).
(End)
T(n,m) = Sum(i=0..n-m, s(i)/(n-i)!*Sum(k=m..n-i, A147315(n-i,k)*Stirling1(k,m))), m>0, T(n,0) = s(n), s(n)=[1,0,1,0,5,0,61,0,1385,0,50521,...] (see A000364). - Vladimir Kruchinin, Mar 10 2011

A185415 Table of coefficients of a polynomial sequence of binomial type related to A080635.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 0, 8, 0, 1, 18, 0, 20, 0, 1, 0, 148, 0, 40, 0, 1, 378, 0, 658, 0, 70, 0, 1, 0, 5040, 0, 2128, 0, 112, 0, 1, 14562, 0, 33992, 0, 5628, 0, 168, 0, 1, 0, 277164, 0, 158480, 0, 12936, 0, 240, 0, 1
Offset: 1

Views

Author

Peter Bala, Jan 27 2011

Keywords

Comments

Define a sequence of polynomials P(n,x) by means of the recurrence relation
(1)... P(n+1,x) = x*{P(n,x-1)-P(n,x)+P(n,x+1)}
with starting value P(0,x) = 1. The first few polynomials are
P(1,x) = x
P(2,x) = x^2
P(3,x) = x*(x^2+2),
P(4,x) = x^2*(x^2+8),
P(5,x) = x*(x^4+20*x^2+18).
This triangle lists the coefficients of these polynomials in ascending powers of x. The triangle has links with A080635, which gives the number of ordered increasing 0-1-2 trees on n nodes (plane unary-binary trees in the notation of [BERGERON et al.]). The number of forests of k such trees on n nodes is given by the formula
... 1/k!*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j).
See A185422.
We also have A080635(n) = P(n,1), which can be used to calculate the terms of A080635 - see A185416.
For similarly defined polynomial sequences for other families of trees see A147309 and A185419. See also A185417.
Exponential Riordan array [(3/2)*(1-sqrt(3)*tan((Pi+3*sqrt(3)*x)/6))/(-1+2*sin((Pi-6*sqrt(3)*x)/6)), log((1/2)*(1+sqrt(3)*tan(sqrt(3)*x/2+Pi/6)))]. Production matrix is the exponential Riordan array [2*cosh(x)-1,x] beheaded. A185422*A008277^{-1}.

Examples

			Triangle begins:
  n\k|....1......2......3......4......5......6......7......8
  ==========================================================
  ..1|....1
  ..2|....0......1
  ..3|....2......0......1
  ..4|....0......8......0......1
  ..5|...18......0.....20......0......1
  ..6|....0....148......0.....40......0......1..
  ..7|..378......0....658......0.....70......0......1
  ..8|....0...5040......0...2128......0....112......0......1
		

References

  • F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.

Crossrefs

Programs

  • Maple
    #A185415
    P := proc(n,x)
    description 'polynomial sequence P(n,x)'
    if n = 0
    return 1
    else return
    x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1))
    end proc:
    with(PolynomialTools):
    for n from 1 to 10
    CoefficientList(P(n,x),x);
    end do;
  • Mathematica
    p[0][x_] = 1; p[n_][x_] := p[n][x] = x*(p[n-1][x-1] - p[n-1][x] + p[n-1][x+1]) // Expand; row[n_] := CoefficientList[ p[n][x], x]; Table[row[n] // Rest, {n, 1, 10}] // Flatten (* Jean-François Alcover, Sep 11 2012 *)

Formula

GENERATING FUNCTION
The e.g.f. is
(1)... F(x, t) = E(t)^x = Sum_{n >= 0} P(n, x) * t^n/n!,
where
E(t) = 1/2+sqrt(3)/2*tan[sqrt(3)/2*t+Pi/6] = 1 + t + t^2/2! + 3*t^3/3! + 9*t^4/4! + ... is the e.g.f. for A080635.
ROW POLYNOMIALS
One easily checks that
... d/dt(F(x,t)) = x*(F(x-1,t)-F(x,t)+F(x+1,t))
and hence the row generating polynomials P(n,x) satisfy the recurrence relation
(2)... P(n+1,x) = x*{P(n,x-1)-P(n,x)+P(n,x+1)}.
RELATIONS WITH OTHER SEQUENCES
A080635(n) = P(n,1).
A185422(n,k) = 1/k!*Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j).
A185423(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(k,j)*P(n,j).

A185418 Square array, read by antidiagonals, used to recursively calculate the Springer numbers A001586.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 11, 11, 5, 1, 57, 57, 27, 7, 1, 361, 361, 175, 51, 9, 1, 2763, 2763, 1353, 413, 83, 11, 1, 24611, 24611, 12125, 3801, 819, 123, 13, 1, 250737, 250737, 123987, 39487, 8857, 1441, 171, 15, 1, 2873041, 2873041, 1424215, 458331, 105489, 18057, 2327, 227, 17, 1
Offset: 0

Views

Author

Peter Bala, Jan 30 2011

Keywords

Comments

The table entries T(n,k), n,k>=0, are defined by the recurrence relation:
1)... T(n+1,k) = k*T(n,k-1)+(k+1)*T(n,k+1) with boundary condition T(0,k) = 1.
The first column of the table produces the sequence of Springer numbers A001586.
For similarly defined tables see A185414, A185416 and A185420.

Examples

			Square array begins
n\k|.....0......1.......2.......3........4........5........6
============================================================
..0|.....1......1.......1.......1........1........1........1
..1|.....1......3.......5.......7........9.......11.......13
..2|.....3.....11......27......51.......83......123......171
..3|....11.....57.....175.....413......819.....1441.....2327
..4|....57....361....1353....3801.....8857....18057....33321
..5|...361...2763...12125...39487...105489...244211...507013
..6|..2763..24611..123987..458331..1379003..3569523..8229891
..
Examples of recurrence relation:
T(4,3) = 3801 = 3*T(3,2) + 4*T(3,4) = 3*175 + 4*819;
T(5,1) = 2763 = 1*T(4,0)+ 2*T(4,2) = 1*57 + 2*1353.
		

Crossrefs

Programs

  • Maple
    # A185418
    S := proc(n, x) option remember; description `polynomials S(n, x)`;
    if n = 0 then 1 else x*S(n-1,x-1)+(x+1)*S(n-1,x+1) end if end proc:
    for n from 0 to 10 do seq(S(n, k), k = 0..10) end do;
  • Mathematica
    T[n_, k_] := T[n, k] = If[n<0 || k<0, 0, If[n == 0, 1, k T[n-1, k-1] + (k+1)*T[n-1, k+1]]];
    Table[T[n-k, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-François Alcover, Apr 22 2021 *)
  • PARI
    {T(n,k)=if(n<0||k<0,0,if(n==0,1,k*T(n-1,k-1)+(k+1)*T(n-1,k+1)))}

Formula

(1)... T(n,k) = S(n,k) with S(n,x) the polynomials described in A185417.
(2)... First column: T(n,0) = A001586(n).
(3)... Second column: T(n,1) = A001586(n+1).
(4)... Second row: T(1,k) = A005408(k).
(5)... Third row: T(2,k) = A164897(k).

A185419 Table of coefficients of a polynomial sequence of binomial type related to the enumeration of minimax trees A080795.

Original entry on oeis.org

1, 3, 1, 10, 9, 1, 42, 67, 18, 1, 248, 510, 235, 30, 1, 1992, 4378, 2835, 605, 45, 1, 19600, 44268, 34888, 10605, 1295, 63, 1, 222288, 524748, 461748, 178913, 31080, 2450, 84, 1, 2851712, 7103088, 6728428, 3069612, 690753, 77112, 4242, 108, 1
Offset: 1

Views

Author

Peter Bala, Feb 07 2011

Keywords

Comments

DEFINITION
Define a sequence of polynomials M(n,x) by means of the recurrence relation
(1)... M(n+1,x) = x*{2*M(n,x+1)-M(n,x-1)},
with starting value M(0,x) = 1. We call these the minimax polynomials.
The first few polynomials are
M(1,x) = x
M(2,x) = x*(x + 3)
M(3,x) = x*(x^2 + 9*x + 10)
M(4,x) = x*(x^3 + 18*x^2 + 67*x + 42)
M(5,x) = x*(x^4 + 30*x^3 + 235*x^2 + 510*x + 248).
This triangle lists the coefficients of these polynomials (apart from M(0,x)) in ascending powers of x.
RELATION TO MINIMAX TREES
The value M(n,1) equals the number of minimax trees on n nodes - A080795(n). This result can be used to recursively calculate the entries of A080795 - see A185420.
In addition, the minimax polynomials M(n,x) occur in the formula for the number T(n,k) of forests of k minimax trees on n nodes. ... T(n,k) = 1/k!*sum {j = 0..k} (-1)^(k-j)*binomial(k,j)*M(n,j).
ANALOGIES WITH THE MONOMIALS
{M(n,x)}n>=0 is a polynomial sequence of binomial type and so is analogous to the sequence of monomials x^n. Denoting M(n,x) by x^[n] to emphasize this analogy, we have, for example, the following analog of Bernoulli's formula for the sum of integer powers:
(2)... 1^[p]+...+(n-1)^[p] = -2*n^[p]+ 1/(p+1)*Sum_{k = 0..floor(p/2)} 8^k*binomial(p+1,2k)*B_(2k)*n^[p+1-2k], where {B_k}k>=0 = [1, -1/2, 1/6, 0, -1/30, ...] is the sequence of Bernoulli numbers.
For other polynomial sequences defined by recurrences similar to (1), and related to the zigzag numbers A000111 and the Springer numbers A001586, see A147309 and A185417, respectively. See also A185415.
The Bell transform of A143523(n). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 18 2016

Examples

			Triangle begins
n\k|.....1......2......3......4......5......6......7
====================================================
..1|.....1
..2|.....3......1
..3|....10......9......1
..4|....42.....67.....18......1
..5|...248....510....235.....30......1
..6|..1992...4378...2835....605.....45......1
..7|.19600..44268..34888..10605...1295.....63......1
..
Example of the generalized Bernoulli summation formula:
The second row of the triangle gives x^[2] = 3*x+x^2.
Then 1^[2]+2^[2]+...+(n-1)^[2] = (n^3+3*n^2-4*n)/3 = 1/3*(MB(3,n)-MB(3,0)).
From _R. J. Mathar_, Mar 15 2013: (Start)
The matrix inverse starts
       1;
      -3,       1;
      17,      -9,        1;
    -147,      95,      -18,      1;
    1697,   -1245,      305,    -30,      1;
  -24483,   19687,    -5670,    745,    -45,    1;
  423857, -365757,   118237, -18690,   1540,  -63,   1;
-8560947, 7819287, -2761122, 498197, -50190, 2842, -84, 1; (End)
		

Crossrefs

Cf. A080253 (coeffs. of delta operator), A080795 (row sums), A143523 (column 1), A147309, A185415, A185417, A185420.

Programs

  • Maple
    #A185419
    M := proc(n,x) option remember;
    if n = 0 then
    return 1
    else return
    x*(2*M(n-1,x+1)-M(n-1,x-1))
    end if;
    end proc:
    with(PolynomialTools):
    for n from 1 to 10 do
    CoefficientList(M(n,x),x);
    end do;
  • Mathematica
    M[0, ] = 1; M[n, x_] := M[n, x] = x (2 M[n-1, x+1] - M[n-1, x-1]);
    Table[CoefficientList[M[n, x], x] // Rest, {n, 1, 10}] (* Jean-François Alcover, Jun 26 2019 *)
  • Sage
    # uses[bell_matrix from A264428]
    # Adds a column 1,0,0,0, ... at the left side of the triangle.
    bell_matrix(lambda n: A143523(n), 10) # Peter Luschny, Jan 18 2016

Formula

GENERATING FUNCTION
Let a = 3-2*sqrt(2). Let f(t) = (1/2)*sqrt(2)*((1+a*exp(2*sqrt(2)*t))/ (1-a*exp(2*sqrt(2)*t))) = 1 + t + 4*t^2/2! + 20*t^3/3! + ... be the e.g.f. for A080795. Then the e.g.f. for the current table, including a constant 1, is
(1)... F(x,t) = f(t)^x = Sum_{n>=0} M(n,x)*t^n/n! = 1 + x*t + (3*x+x^2)*t^2/2! + (10*x+9*x^2+x^3)*t^3/3! + ....
ROW POLYNOMIALS
One easily checks that d/dt(F(x,t)) = x*(2*F(x+1,t)-F(x-1,t)) and hence the row generating polynomials M(n,x) satisfy the recurrence relation
(2)... M(n+1,x) = x*{2*M(n,x+1)-M(n,x-1)}.
The form of the e.g.f shows that the row polynomials are a polynomial sequence of binomial type. The associated delta operator D* is given by
(3)... D* = sqrt(2)/4*log((3+2*sqrt(2))*(sqrt(2)*exp(D)-1)/(sqrt(2)*exp(D)+1)),
where D is the derivative operator d/dx. This expands to
(4)... D* = D - 3*D^2/2! + 17*D^3/3! - 147*D^4/4! + ....
The sequence of coefficients [1,3,17,147,...] is A080253.
The delta operator D* acts as a lowering operator for the minimax polynomials
(5)...(D*) M(n,x) = n*M(n-1,x).
In what follows it will be convenient to denote M(n,x) by x^[n].
ANALOG OF THE LITTLE FERMAT THEOREM
For integer x and odd prime p
(6)... x^[p] = (-1)^((p^2-1)/8)*x (mod p).
More generally, for k = 1,2,...
(7)... x^[p+k-1] = (-1)^((p^2-1)/8)*x^[k] (mod p).
GENERALIZED BERNOULLI POLYNOMIALS ASSOCIATED WITH THE MINIMAX POLYNOMIALS
The generalized Bernoulli polynomial MB(k,x) associated with the minimax polynomial x^[k] (= M(k,x)) may be defined as the result of applying the differential operator D*/(exp(D)-1) to the polynomial x^[k]:
(8)... MB(k,x) := {D*/(exp(D)-1)} x^[k].
The first few generalized Bernoulli polynomials are
MB(0,x) = 1,
MB(1,x) = x - 2,
MB(2,x) = x^2 - x + 4/3,
MB(3,x) = x^3 + 3*x^2 - 4*x,
MB(4,x) = x^4 + 10*x^3 + 3*x^2 - 14*x - 32/15.
Since exp(D)-1 is the forward difference operator it follows from (5) and (8) that
(9)... MB(k,x+1) - MB(k,x) = k*x^[k-1].
Summing (9) from x = 1 to x = n-1 and telescoping we find a closed form expression for the finite sums
(10)... 1^[p]+2^[p]+...+(n-1)^[p] = 1/(p+1)*{MB(p+1,n)-MB(p+1,1)}.
The generalized Bernoulli polynomials can be expanded in terms of the minimax polynomials x^[k]. Use (3) to express exp(D)-1 in terms of D*.
Substitute the resulting expression in (8) and expand as a power series in D* to arrive at the expansion:
(11)... MB(k,x) = -2*k*x^[k-1] + Sum_{j=0..floor(k/2)} 2^(3*j) * binomial(k,2j)*B_(2j)*x^[k-2j], where {B_j}j>=0 = [1,-1/2,1/6,0,-1/30,...] denotes the Bernoulli number sequence.
RELATION WITH OTHER SEQUENCES
Column 1 [1, 3, 10, 42, 248, ...] = A143523 with an offset of 1.
Row sums [1, 1, 4, 20, 128, 1024, ...] = A080795.
Showing 1-5 of 5 results.