cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A001586 Generalized Euler numbers, or Springer numbers.

Original entry on oeis.org

1, 1, 3, 11, 57, 361, 2763, 24611, 250737, 2873041, 36581523, 512343611, 7828053417, 129570724921, 2309644635483, 44110959165011, 898621108880097, 19450718635716001, 445777636063460643, 10784052561125704811, 274613643571568682777, 7342627959965776406281
Offset: 0

Views

Author

Keywords

Comments

From Peter Bala, Feb 02 2011: (Start)
The Springer numbers were originally considered by Glaisher (see references). They are a type B analog of the zigzag numbers A000111 for the group of signed permutations.
COMBINATORIAL INTERPRETATIONS
Several combinatorial interpretations of the Springer numbers are known:
1) a(n) gives the number of Weyl chambers in the principal Springer cone of the Coxeter group B_n of symmetries of an n dimensional cube. An example can be found in [Arnold - The Calculus of snakes...].
2) Arnold found an alternative combinatorial interpretation of the Springer numbers in terms of snakes. Snakes are a generalization of alternating permutations to the group of signed permutations. A signed permutation is a sequence (x_1,x_2,...,x_n) of integers such that {|x_1|,|x_2|,...,|x_n|} = {1,2,...,n}. They form a group, the hyperoctahedral group of order 2^n*n! = A000165(n), isomorphic to the group of symmetries of the n dimensional cube. A snake of type B_n is a signed permutation (x_1,x_2,...,x_n) such that 0 < x_1 > x_2 < ... x_n. For example, (3,-4,-2,-5,1,-6) is a snake of type B_6. a(n) gives the number of snakes of type B_n [Arnold]. The cases n=2 and n=3 are given in the Example section below.
3) The Springer numbers also arise in the study of the critical points of functions; they count the topological types of odd functions with 2*n critical values [Arnold, Theorem 35].
4) Let F_n be the set of plane rooted forests satisfying the following conditions:
... each root has exactly one child, and each of the other internal nodes has exactly two (ordered) children,
... there are n nodes labeled by integers from 1 to n, but some leaves can be non-labeled (these are called empty leaves), and labels are increasing from each root down to the leaves. Then a(n) equals the cardinality of F_n. An example and proof are given in [Verges, Theorem 4.5].
OTHER APPEARANCES OF THE SPRINGER NUMBERS
1) Hoffman has given a connection between Springer numbers, snakes and the successive derivatives of the secant and tangent functions.
2) For integer N the quarter Gauss sums Q(N) are defined by ... Q(N) := Sum_{r = 0..floor(N/4)} exp(2*Pi*I*r^2/N). In the cases N = 1 (mod 4) and N = 3 (mod 4) an asymptotic series for Q(N) as N -> inf that involves the Springer numbers has been given by Evans et al., see 1.32 and 1.33.
For a sequence of polynomials related to the Springer numbers see A185417. For a table to recursively compute the Springer numbers see A185418.
(End)
Similar to the way in which the signed Euler numbers A122045 are 2^n times the value of the Euler polynomials at 1/2, the generalized signed Euler numbers A188458 can be seen as 2^n times the value of generalized Euler polynomials at 1/2. These are the Swiss-Knife polynomials A153641. A recursive definition of these polynomials is given in A081658. - Peter Luschny, Jul 19 2012
a(n) is the number of reverse-complementary updown permutations of [2n]. For example, the updown permutation 241635 is reverse-complementary because its complement is 536142, which is the same as its reverse, and a(2)=3 counts 1324, 2413, 3412. - David Callan, Nov 29 2012
a(n) = |2^n G(n,1/2;-1)|, a specialization of the Appell sequence of polynomials umbrally formed by G(n,x;t) = (G(.,0;t) + x)^n from the Grassmann polynomials G(n,0;t) of A046802 enumerating the cells of the positive Grassmannians. - Tom Copeland, Oct 14 2015
Named "Springer numbers" after the Dutch mathematician Tonny Albert Springer (1926-2011). - Amiram Eldar, Jun 13 2021

Examples

			a(2) = 3: The three snakes of type B_2 are
  (1,-2), (2,1), (2,-1).
a(3) = 11: The 11 snakes of type B_3 are
  (1,-2,3), (1,-3,2), (1,-3,-2),
  (2,1,3), (2,-1,3), (2,-3,1), (2,-3,-1),
  (3,1,2), (3,-1,2), (3,-2,1), (3,-2,-1).
		

References

  • V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom., Vol. 1, No. 2 (1992), pp. 197-214.
  • J. W. L. Glaisher, "On the coefficients in the expansions of cos x/cos 2x and sin x/cos 2x", Quart. J. Pure and Applied Math., Vol. 45 (1914), pp. 187-222.
  • J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., Vol. 29 (1898), pp. 1-168.
  • Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Tonny Albert Springer, Remarks on a combinatorial problem, Nieuw Arch. Wisk., Vol. 19, No. 3 (1971), pp. 30-36.

Crossrefs

Row 2 of A349271.
Bisections are A000281 and A000464. Overview in A349264.
Related polynomials are given in A098432, A081658 and A153641.
Cf. A046802.

Programs

  • Maple
    a := proc(n) local k; (-1)^iquo(n,2)*add(2^k*binomial(n,k)*euler(k),k=0..n) end; # Peter Luschny, Jul 08 2009
    a := n -> (-1)^(n+iquo(n,2))*2^(3*n+1)*(Zeta(0,-n,1/8) - Zeta(0,-n,5/8)):
    seq(a(n),n=0..21); # Peter Luschny, Mar 11 2015
  • Mathematica
    n=21; CoefficientList[Series[1/(Cos[x]-Sin[x]), {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *)
    Table[Abs[Numerator[EulerE[n,1/4]]],{n,0,35}] (* Harvey P. Dale, May 18 2011 *)
  • PARI
    {a(n) = if(n<0, 0, n! * polcoeff( 1 / (cos(x + x * O(x^n)) - sin(x + x * O(x^n))), n))}; /* Michael Somos, Feb 03 2004 */
    
  • PARI
    {a(n) = my(an); if(n<2, n>=0, an = vector(n+1, m, 1); for(m=2, n, an[m+1] = 2*an[m] + an[m-1] + sum(k=0, m-3, binomial(m-2, k) * (an[k+1] * an[m-1-k] + 2*an[k+2] * an[m-k] - an[k+3] * an[m-1-k]))); an[n+1])}; /* Michael Somos, Feb 03 2004 */
    
  • PARI
    /* Explicit formula by Peter Bala: */
    {a(n)=((1+I)/2)^n*sum(k=0,n,((1-I)/(1+I))^k*sum(j=0,k,(-1)^(k-j)*binomial(n+1,k-j)*(2*j+1)^n))}
    
  • Sage
    @CachedFunction
    def p(n,x) :
        if n == 0 : return 1
        w = -1 if n%2 == 0 else 0
        v =  1 if n%2 == 0 else -1
        return v*add(p(k,0)*binomial(n,k)*(x^(n-k)+w) for k in range(n)[::2])
    def A001586(n) : return abs(2^n*p(n, 1/2))
    [A001586(n) for n in (0..21)] # Peter Luschny, Jul 19 2012

Formula

E.g.f.: 1/(cos(x) - sin(x)).
Values at 1 of polynomials Q_n() defined in A104035. - N. J. A. Sloane, Nov 06 2009
a(n) = numerator of abs(Euler(n,1/4)). - N. J. A. Sloane, Nov 07 2009
Let B_n(x) = Sum_{k=0.. n*(n-1)/2} b(n,k)*x^k, where b(n,k) is number of n-node acyclic digraphs with k arcs, cf. A081064; then a(n) = |B_n(-2)|. - Vladeta Jovovic, Jan 25 2005
G.f. A(x) = y satisfies y'^2 = 2y^4 - y^2, y''y = y^2 + 2y'^2. - Michael Somos, Feb 03 2004
a(n) = (-1)^floor(n/2) Sum_{k=0..n} 2^k C(n,k) Euler(k). - Peter Luschny, Jul 08 2009
From Peter Bala, Feb 02 2011: (Start)
(1)... a(n) = ((1 + i)/2)^n*B(n,(1 - i)/(1 + i)), where i = sqrt(-1) and {B(n,x)}n>=0 = [1, 1 + x, 1 + 6*x + x^2, 1 + 23*x + 23*x^2 + x^3, ...] is the sequence of type B Eulerian polynomials - see A060187.
This yields the explicit formula
(2)... a(n) = ((1 + i)/2)^n*Sum_{k = 0..n} ((1 - i)/(1 + i))^k * Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(2*j + 1)^n.
The result (2) can be used to find congruences satisfied by the Springer numbers. For example, for odd prime p
(3)
... a(p) = 1 (mod p) when p = 4*n + 1
... a(p) = -1 (mod p) when p = 4*n + 3.
(End)
E.g.f.: 1/Q(0) where Q(k) = 1 - x/((2k+1)-x*(2k+1)/(x+(2k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2011
E.g.f.: 2/U(0) where U(k) = 1 + 1/(1 + x/(2*k + 1 -x - (2*k+1)/(2 - x/(x+ (2*k+2)/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Sep 24 2012
E.g.f.: 1/G(0) where G(k) = 1 - x/(4*k+1 - x*(4*k+1)/(4*k+2 + x + x*(4*k+2)/(4*k+3 - x - x*(4*k+3)/(x + (4*k+4)/G(k+1) )))); (continued fraction, 3rd kind, 5-step). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+1) - 2*x^2*(k+1)*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013
a(n) = | 2*4^n*lerchphi(-1, -n, 1/4) |. - Peter Luschny, Apr 27 2013
a(n) ~ 4 * n^(n+1/2) * (4/Pi)^n / (sqrt(Pi)*exp(n)). - Vaclav Kotesovec, Oct 07 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/( 2*x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 15 2013
a(n) = (-1)^C(n+1,2)*2^(3*n+1)*(Zeta(-n,1/8)-Zeta(-n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
E.g.f. A(x) satisfies: A(x) = exp( Integral A(x)/A(-x) dx ). - Paul D. Hanna, Feb 04 2017
E.g.f. A(x) satisfies: A'(x) = A(x)^2/A(-x). - Paul D. Hanna, Feb 04 2017

Extensions

More terms from Vladeta Jovovic, Jan 25 2005

A185414 Square array, read by antidiagonals, used to recursively calculate the zigzag numbers A000111.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 5, 5, 3, 1, 16, 16, 10, 4, 1, 61, 61, 39, 17, 5, 1, 272, 272, 176, 80, 26, 6, 1, 1385, 1385, 903, 421, 145, 37, 7, 1, 7936, 7936, 5200, 2464, 880, 240, 50, 8, 1, 50521, 50521, 33219, 15917, 5825, 1661, 371, 65, 9, 1
Offset: 1

Views

Author

Peter Bala, Jan 26 2011

Keywords

Comments

The table entries T(n,k), for n,k>=1, are defined by means of the recurrence relation (1)... T(n+1,k) = 1/2*{(k-1)*T(n,k-1)+(k+1)*T(n,k+1)}, with boundary condition T(1,k) = 1.
The first column of the table produces the sequence of zigzag numbers A000111. Cf. A185416, A185418 and A185420.
Diagonal T(n,n+1) = A290579(n) for n>=1. - Paul D. Hanna, Aug 07 2017

Examples

			The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...;
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...;
2, 5, 10, 17, 26, 37, 50, 65, 82, ...;
5, 16, 39, 80, 145, 240, 371, 544, 765, ...;
16, 61, 176, 421, 880, 1661, 2896, 4741, 7376, ...;
61, 272, 903, 2464, 5825, 12336, 23947, 43328, 73989, ...;
272, 1385, 5200, 15917, 41936, 98377, 210320, 416765, ...;
1385, 7936, 33219, 112640, 326965, 840960, 1962191, ...; ...
Examples of the recurrence:
T(4,4) = 80 = (3*T(3,3) + 5*T(3,5))/2 = (3*10 + 5*26)/2;
T(5,3) = 176 = (2*T(4,2) + 4*T(4,4))/2 = (2*16 + 4*80)/2;
T(6,2) = 272 = (1*T(5,1) + 3*T(5,3))/2 = (1*16 + 3*176)/2.
		

Crossrefs

Programs

  • Maple
    #A185414 Z := proc(n,x)
    description 'zigzag polynomials A147309'
    if n = 0 return 1 else return 1/2*x*(Z(n-1,x-1)+Z(n-1,x+1))
    end proc:
    # values of Z(n,x)/x
    for n from 1 to 10 do seq(Z(n,k)/k, k = 1..10);
    end do;
  • PARI
    {T(n,k)=if(n==1,1,((k-1)*T(n-1,k-1)+(k+1)*T(n-1,k+1))/2)}
    for(n=1,10, for(k=1,10, print1(T(n,k),", ")); print(""))

Formula

(1)... T(n,k) = Z(n,k)/k with Z(n,x) the zigzag polynomials described in A147309.

A185416 Square array, read by antidiagonals, used to recursively calculate A080635.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 9, 6, 3, 1, 39, 24, 11, 4, 1, 189, 114, 51, 18, 5, 1, 1107, 648, 279, 96, 27, 6, 1, 7281, 4194, 1767, 594, 165, 38, 7, 1, 54351, 30816, 12699, 4176, 1143, 264, 51, 8, 1, 448821, 251586, 101979, 32922, 8865, 2034, 399, 66, 9, 1
Offset: 1

Views

Author

Peter Bala, Jan 28 2011

Keywords

Comments

The table entries T(n,k), n,k>=1, are defined by the recurrence relation
1)... T(n+1,k) = (k-1)*T(n,k-1)-k*T(n,k)+(k+1)*T(n,k+1) with boundary condition T(1,k)=1.
The first column of the table is A080635.
For similar tables to calculate the zigzag numbers, the Springer numbers and the number of minimax trees see A185414, A185418 and A185420, respectively.

Examples

			Triangle begins
n\k|....1......2......3......4......5.......6.......7
=====================================================
..1|....1......1......1......1......1.......1.......1
..2|....1......2......3......4......5.......6.......7
..3|....3......6.....11.....18.....27......38......51
..4|....9.....24.....51.....96....165.....264.....399
..5|...39....114....279....594...1143....2034....3399
..6|..189....648...1767...4176...8865...17304...31563
..7|.1107...4194..12699..32922..76203..161442..318339
..
Examples of the recurrence:
T(4,4) = 96 = 3*T(3,3)-4*T(3,4)+5*T(3,5) = 3*11-4*18+ 5*27;
T(5,1) = 39 = 0*T(4,0)-1*T(4,1)+2*T(4,2) = -1*9+2*24;
		

Crossrefs

Programs

  • Maple
    #A185416
    P := proc(n,x) description 'polynomial sequence P(n,x) A185415'
    if n = 0 return 1
    else return
    x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1))
    end proc:
    for n from 1 to 10 do
    seq(P(n,k)/k,k = 1..10);
    end do;
  • PARI
    {T(n, k)=if(n==1, 1, (k-1)*T(n-1, k-1)-k*T(n-1,k)+(k+1)*T(n-1, k+1))}

Formula

(1)... T(n,k) = P(n,k)/k, where P(n,x) are the polynomials defined in A185415.

A185417 Table of coefficients of a polynomial sequence related to the Springer numbers.

Original entry on oeis.org

1, 1, 2, 3, 4, 4, 11, 26, 12, 8, 57, 120, 136, 32, 16, 361, 970, 760, 560, 80, 32, 2763, 7052, 8860, 3680, 2000, 192, 64, 24611, 72530, 72884, 58520, 15120, 6496, 448, 128, 250737, 716528, 976464, 538048, 314720, 55552, 19712, 1024, 256
Offset: 1

Views

Author

Peter Bala, Jan 28 2011

Keywords

Comments

Define a polynomial sequence S(n,x) recursively by
(1)... S(n+1,x) = x*S(n,x-1)+(x+1)*S(n,x+1) with S(0,x) = 1.
This table lists the coefficients of these polynomials (for n>=1) in ascending powers of x.
The first few polynomials are
S(0,x) = 1
S(1,x) = 2*x+1
S(2,x) = 4*x^2+4*x+3
S(3,x) = 8*x^3+12*x^2+26*x+11.
The sequence [1,1,3,11,57,...] of constant terms of the polynomials is the sequence of Springer numbers A001586. The zeros of the polynomials S(n,-x) lie on the vertical line Re x = 1/2 in the complex plane.
Compare the recurrence (1) with the recurrence relation satisfied by the coefficients T(n,k) of the polynomials of A104035, namely
(2)... T(n+1,k) = k*T(n,k-1)+(k+1)*T(n,k+1).

Examples

			Table begin
n\k|.....0.....1.....2.....3.....4.....5......6
===============================================
0..|.....1
1..|.....1.....2
2..|.....3.....4.....4
3..|....11....26....12.....8
4..|....57...120...136....32...16
5..|...361...970...760...560...80.....32
6..|..2763..7052..8860..3680..2000...192....64
...
		

Crossrefs

Cf A001586 (1st column and row sums), A104035, A126156, A147309, A185415, A185418, A185419

Programs

  • Maple
    #A185417
    S := proc(n,x) option remember;
    description 'polynomials S(n,x)'
    if n = 0 return 1 else return x*S(n-1,x-1)+(x+1)*S(n-1,x+1)
    end proc:
    with(PolynomialTools):
    for n from 1 to 10 CoefficientList(S(n,x),x); end do;
  • Mathematica
    S[0, ] = 1; S[n, x_] := S[n, x] = x*S[n-1, x-1] + (x+1)*S[n-1, x+1]; Table[ CoefficientList[S[n, x], x], {n, 0, 8}] // Flatten (* Jean-François Alcover, Apr 15 2015 *)

Formula

E.g.f: F(x,t) = 1/(cos(t)-sin(t))*(tan(2*t)+sec(2*t))^x
= (cos(t)+sin(t))^x/(cos(t)-sin(t))^(x+1)
= 1 + (2*x+1)*t + (4*x^2+4*x+3)*t^2/2! + ....
Note that (tan(t)+sec(t))^x is the e.g.f for table A147309.
ROW POLYNOMIALS
The easily checked identity d/dt F(x,t) = x*F(x-1,t)+(x+1)*F(x+1,t) shows that the row generating polynomials of this table are the polynomials S(n,x) described in the Comments section above.
The polynomials S(n,-x) satisfy a Riemann hypothesis: that is, the zeros of S(n,-x) lie on the vertical line Re(x) = 1/2 in the complex plane - see the link.
RELATION WITH OTHER SEQUENCES
1st column [1,1,3,11,57,...] is A001586.
Row sums sequence [1,3,11,57,...] is also A001586.
For n>=1, the values 1/2^n*P(2*n,-1/2) = [1,7,139,5473,...] appear to be A126156.

A185420 Square array, read by antidiagonals, used to recursively calculate the number of minimax trees A080795.

Original entry on oeis.org

1, 4, 1, 20, 5, 1, 128, 32, 6, 1, 1024, 256, 46, 7, 1, 9856, 2464, 432, 62, 8, 1, 110720, 27680, 4784, 662, 80, 9, 1, 1421312, 355328, 60864, 8224, 952, 100, 10, 1, 20525056, 5131264, 873664, 116128, 13048, 1308, 122, 11, 1
Offset: 1

Views

Author

Peter Bala, Jan 30 2011

Keywords

Comments

The table entries T(n,k), for n,k>=1, are defined by means of the recurrence relation
(1)... T(n+1,k) = (2*k+2)*T(n,k+1)-(k-1)*T(n,k-1),
with boundary condition T(1,k) = 1.
The first column of the table gives A080795.
For similarly defined tables used to calculate the zigzag numbers A000111 and the Springer numbers A001586 see A185414 and A185418, respectively.
See also A185416.

Examples

			Square array begins
n\k|......1.......2.......3........4.......5.........6
======================================================
..1|......1.......1.......1........1........1........1
..2|......4.......5.......6........7........8........9
..3|.....20......32......46.......62.......80......100
..4|....128.....256.....432......662......952.....1308
..5|...1024....2464....4784.....8224....13048....19544
..6|...9856...27680...60864...116128...201632...327096
..7|.110720..355328..873664..1833728..3460640..6046720
..
Examples of recurrence relation:
T(4,3) = 432 = 8*T(3,4) - 2*T(3,2) = 8*62 - 2*32;
T(6,2) = 27680 = 6*T(5,3) - 1*T(5,1) = 6*4784 - 1*1024.
		

Crossrefs

Programs

  • Maple
    #A185420
    M := proc(n,x) option remember;
    description 'minimax polynomials M(n,x)'
    if n = 0
    return 1
    else return
    x*(2*M(n-1,x+1)-M(n-1,x-1))
    end proc:
    for n from 1 to 10 do
    seq(M(n,k)/k, k = 1..10);
    end do;
  • Mathematica
    M[n_, x_] := M[n, x] = If[n == 0, 1, x (2 M[n - 1, x + 1] - M[n - 1, x - 1])];
    T[n_, k_] := M[n, k]/k;
    Table[T[d - k + 1, k], {d, 1, 9}, {k, 1, d}] // Flatten (* Jean-François Alcover, Sep 24 2022 *)
  • PARI
    {T(n,k)=if(n<1||k<1,0,if(n==1,1,(2*k+2)*T(n-1,k+1)-(k-1)*T(n-1,k-1)))}

Formula

(1)... T(n,k) = M(n,k)/k with M(n,x) the polynomials described in A185419.
(2)... First column: T(n,1) = A080795(n).
(3)... Second column: T(n,2) = (1/4)*A080795(n+1).
Showing 1-5 of 5 results.