A001586 Generalized Euler numbers, or Springer numbers.
1, 1, 3, 11, 57, 361, 2763, 24611, 250737, 2873041, 36581523, 512343611, 7828053417, 129570724921, 2309644635483, 44110959165011, 898621108880097, 19450718635716001, 445777636063460643, 10784052561125704811, 274613643571568682777, 7342627959965776406281
Offset: 0
Examples
a(2) = 3: The three snakes of type B_2 are (1,-2), (2,1), (2,-1). a(3) = 11: The 11 snakes of type B_3 are (1,-2,3), (1,-3,2), (1,-3,-2), (2,1,3), (2,-1,3), (2,-3,1), (2,-3,-1), (3,1,2), (3,-1,2), (3,-2,1), (3,-2,-1).
References
- V. I. Arnold, Springer numbers and Morsification spaces. J. Algebraic Geom., Vol. 1, No. 2 (1992), pp. 197-214.
- J. W. L. Glaisher, "On the coefficients in the expansions of cos x/cos 2x and sin x/cos 2x", Quart. J. Pure and Applied Math., Vol. 45 (1914), pp. 187-222.
- J. W. L. Glaisher, On the Bernoullian function, Q. J. Pure Appl. Math., Vol. 29 (1898), pp. 1-168.
- Ulrike Sattler, Decidable classes of formal power series with nice closure properties, Diplomarbeit im Fach Informatik, Univ. Erlangen - Nürnberg, Jul 27 1994.
- N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Tonny Albert Springer, Remarks on a combinatorial problem, Nieuw Arch. Wisk., Vol. 19, No. 3 (1971), pp. 30-36.
Links
- Matthew House, Table of n, a(n) for n = 0..432 (terms 0..100 from T. D. Noe)
- Vladimir Igorevich Arnol'd, The calculus of snakes and the combinatorics of Bernoulli, Euler and Springer numbers of Coxeter groups, Uspekhi Mat. nauk., Vol. 47, No. 1 (1992), pp. 3-45; English version, Russian Math. Surveys, Vol. 47 (1992), pp. 1-51.
- Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo and Matteo Silimbani, Ascending runs in permutations and valued Dyck paths, Ars Mathematica Contemporanea, Vol. 16, No. 2 (2019), pp. 445-463.
- Paul Barry, A Note on Three Families of Orthogonal Polynomials defined by Circular Functions, and Their Moment Sequences, Journal of Integer Sequences, Vol. 15 (2012), Article 12.7.2.
- Paul Barry, On a transformation of Riordan moment sequences, arXiv:1802.03443 [math.CO], 2018.
- William Y. C. Chen, Neil J. Y. Fan and Jeffrey Y. T. Jia, Labeled Ballot Paths and the Springer Numbers, arXiv:1009.2233 [math.CO], Sep 12 2010. [From _Jonathan Vos Post_, Sep 13 2010]
- Shaoshi Chen, Hanqian Fang, Sergey Kitaev, and Candice X.T. Zhang, Patterns in Multi-dimensional Permutations, arXiv:2411.02897 [math.CO], 2024. See p. 12.
- Suyoung Choi, Boram Park and Hanchul Park, The Betti numbers of real toric varieties associated to Weyl chambers of type B, arXiv preprint arXiv:1602.05406 [math.AT], 2016.
- Chak-On Chow and Shi-Mei Ma, Counting signed permutations by their alternating runs, Discrete Mathematics, Vol. 323 (28 May 2014), pp. 49-57.
- D. Dumont, Further triangles of Seidel-Arnold type and continued fractions related to Euler and Springer numbers Adv. Appl. Math., Vol. 16, No. 3 (1995), pp. 275-296.
- Ronald Evans, Marvin Minei and Bennet Yee, Incomplete higher order Gauss sums, J. Math. Anal. Appl., Vol. 281, No. 2 (2003), pp. 454-476. See 1.32 and 1.33.
- Dominique Foata and Guo-Niu Han, Multivariable Tangent and Secant q-derivative Polynomials, arXiv:1304.2486 [math.CO], 2013; alternative link.
- J. W. L. Glaisher, On a set of coefficients analogous to the Eulerian numbers, Proc. London Math. Soc., 31 (1899), 216-235.
- Tian Han, Sergey Kitaev, and Philip B. Zhang, Distribution of maxima and minima statistics on alternating permutations, Springer numbers, and avoidance of flat POPs, arXiv:2408.12865 [math.CO], 2024. See p. 2.
- Christopher R. H. Hanusa, Alejandro H. Morales, and Martha Yip, Column convex matrices, G-cyclic orders, and flow polytopes, arXiv:2107.07326 [math.CO], 2021.
- Michael E. Hoffman, Derivative Polynomials, Euler Polynomials, and Associated Integer Sequences, The Electronic Journal of Combinatorics, Vol. 6 (1999), #R21 (see Th. 3.1).
- Matthieu Josuat-Vergès, Enumeration of snakes and cycle-alternating permutations, arXiv:1011.0929 [math.CO], 2010.
- Matthieu Josuat-Vergès, J.-C. Novelli and J.-Y. Thibon, The algebraic combinatorics of snakes, arXiv preprint arXiv:1110.5272 [math.CO], 2011.
- Emanuele Munarini, Two-Parameter Identities for q-Appell Polynomials, Journal of Integer Sequences, Vol. 26 (2023), Article 23.3.1.
- Igor Pak and Andrew Soffer, On Higman's k(U_n(F_q)) conjecture, arXiv preprint arXiv:1507.00411 [math.CO], 2015.
- Daniel Shanks, Generalized Euler and class numbers, Math. Comp., Vol. 21, No. 100 (1967), pp. 689-694; Vol. 22, No. 103 (1968), p. 699. [Annotated scanned copy]
- Daniel Shanks, Generalized Euler and class numbers. Math. Comp., Vol. 21, No. 100 (1967), pp. 689-694.
- Daniel Shanks, Corrigenda to: "Generalized Euler and class numbers", Math. Comp. 22, No. 103 (1968), p. 699.
- Alan D. Sokal, The Euler and Springer numbers as moment sequences, arXiv:1804.04498 [math.CO], 2018.
- Zhi-Hong Sun, Congruences involving Bernoulli polynomials, Discr. Math., Vol. 308, No. 1 (2007), pp. 71-112.
- Zhi-Wei Sun, Conjectures involving arithmetical sequences, Number Theory: Arithmetic in Shangri-La (eds., S. Kanemitsu, H.-Z. Li and J.-Y. Liu), Proc. the 6th China-Japan Sem. Number Theory (Shanghai, August 15-17, 2011), World Sci., Singapore, 2013, pp. 244-258; see Conjectures involving combinatorial sequences, arXiv preprint arXiv:1208.2683 [math.CO], 2012.
- M. S. Tokmachev, Correlations Between Elements and Sequences in a Numerical Prism, Bulletin of the South Ural State University, Ser. Mathematics. Mechanics. Physics, Vol. 11, No. 1 (2019), pp. 24-33.
- Andrei Vieru, Agoh's conjecture: its proof, its generalizations, its analogues, arXiv preprint arXiv:1107.2938 [math.NT], 2011.
- Younghan Yoon, Cohomology of type B real permutohedral varieties, arXiv:2501.09496 [math.AT], 2025. See p. 2.
Crossrefs
Programs
-
Maple
a := proc(n) local k; (-1)^iquo(n,2)*add(2^k*binomial(n,k)*euler(k),k=0..n) end; # Peter Luschny, Jul 08 2009 a := n -> (-1)^(n+iquo(n,2))*2^(3*n+1)*(Zeta(0,-n,1/8) - Zeta(0,-n,5/8)): seq(a(n),n=0..21); # Peter Luschny, Mar 11 2015
-
Mathematica
n=21; CoefficientList[Series[1/(Cos[x]-Sin[x]), {x, 0, n}], x] * Table[k!, {k, 0, n}] (* Jean-François Alcover, May 18 2011 *) Table[Abs[Numerator[EulerE[n,1/4]]],{n,0,35}] (* Harvey P. Dale, May 18 2011 *)
-
PARI
{a(n) = if(n<0, 0, n! * polcoeff( 1 / (cos(x + x * O(x^n)) - sin(x + x * O(x^n))), n))}; /* Michael Somos, Feb 03 2004 */
-
PARI
{a(n) = my(an); if(n<2, n>=0, an = vector(n+1, m, 1); for(m=2, n, an[m+1] = 2*an[m] + an[m-1] + sum(k=0, m-3, binomial(m-2, k) * (an[k+1] * an[m-1-k] + 2*an[k+2] * an[m-k] - an[k+3] * an[m-1-k]))); an[n+1])}; /* Michael Somos, Feb 03 2004 */
-
PARI
/* Explicit formula by Peter Bala: */ {a(n)=((1+I)/2)^n*sum(k=0,n,((1-I)/(1+I))^k*sum(j=0,k,(-1)^(k-j)*binomial(n+1,k-j)*(2*j+1)^n))}
-
Sage
@CachedFunction def p(n,x) : if n == 0 : return 1 w = -1 if n%2 == 0 else 0 v = 1 if n%2 == 0 else -1 return v*add(p(k,0)*binomial(n,k)*(x^(n-k)+w) for k in range(n)[::2]) def A001586(n) : return abs(2^n*p(n, 1/2)) [A001586(n) for n in (0..21)] # Peter Luschny, Jul 19 2012
Formula
E.g.f.: 1/(cos(x) - sin(x)).
Values at 1 of polynomials Q_n() defined in A104035. - N. J. A. Sloane, Nov 06 2009
a(n) = numerator of abs(Euler(n,1/4)). - N. J. A. Sloane, Nov 07 2009
Let B_n(x) = Sum_{k=0.. n*(n-1)/2} b(n,k)*x^k, where b(n,k) is number of n-node acyclic digraphs with k arcs, cf. A081064; then a(n) = |B_n(-2)|. - Vladeta Jovovic, Jan 25 2005
G.f. A(x) = y satisfies y'^2 = 2y^4 - y^2, y''y = y^2 + 2y'^2. - Michael Somos, Feb 03 2004
a(n) = (-1)^floor(n/2) Sum_{k=0..n} 2^k C(n,k) Euler(k). - Peter Luschny, Jul 08 2009
From Peter Bala, Feb 02 2011: (Start)
(1)... a(n) = ((1 + i)/2)^n*B(n,(1 - i)/(1 + i)), where i = sqrt(-1) and {B(n,x)}n>=0 = [1, 1 + x, 1 + 6*x + x^2, 1 + 23*x + 23*x^2 + x^3, ...] is the sequence of type B Eulerian polynomials - see A060187.
This yields the explicit formula
(2)... a(n) = ((1 + i)/2)^n*Sum_{k = 0..n} ((1 - i)/(1 + i))^k * Sum_{j = 0..k} (-1)^(k-j)*binomial(n+1,k-j)*(2*j + 1)^n.
The result (2) can be used to find congruences satisfied by the Springer numbers. For example, for odd prime p
(3)
... a(p) = 1 (mod p) when p = 4*n + 1
... a(p) = -1 (mod p) when p = 4*n + 3.
(End)
E.g.f.: 1/Q(0) where Q(k) = 1 - x/((2k+1)-x*(2k+1)/(x+(2k+2)/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 19 2011
E.g.f.: 2/U(0) where U(k) = 1 + 1/(1 + x/(2*k + 1 -x - (2*k+1)/(2 - x/(x+ (2*k+2)/U(k+1))))); (continued fraction, 5-step). - Sergei N. Gladkovskii, Sep 24 2012
E.g.f.: 1/G(0) where G(k) = 1 - x/(4*k+1 - x*(4*k+1)/(4*k+2 + x + x*(4*k+2)/(4*k+3 - x - x*(4*k+3)/(x + (4*k+4)/G(k+1) )))); (continued fraction, 3rd kind, 5-step). - Sergei N. Gladkovskii, Oct 02 2012
G.f.: 1/G(0) where G(k) = 1 - x*(2*k+1) - 2*x^2*(k+1)*(k+1)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013
a(n) = | 2*4^n*lerchphi(-1, -n, 1/4) |. - Peter Luschny, Apr 27 2013
a(n) ~ 4 * n^(n+1/2) * (4/Pi)^n / (sqrt(Pi)*exp(n)). - Vaclav Kotesovec, Oct 07 2013
G.f.: T(0)/(1-x), where T(k) = 1 - 2*x^2*(k+1)^2/( 2*x^2*(k+1)^2 - (1-x-2*x*k)*(1-3*x-2*x*k)/T(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Oct 15 2013
a(n) = (-1)^C(n+1,2)*2^(3*n+1)*(Zeta(-n,1/8)-Zeta(-n,5/8)), where Zeta(a,z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
E.g.f. A(x) satisfies: A(x) = exp( Integral A(x)/A(-x) dx ). - Paul D. Hanna, Feb 04 2017
E.g.f. A(x) satisfies: A'(x) = A(x)^2/A(-x). - Paul D. Hanna, Feb 04 2017
Extensions
More terms from Vladeta Jovovic, Jan 25 2005
Comments