A080795 Number of minimax trees on n nodes.
1, 1, 4, 20, 128, 1024, 9856, 110720, 1421312, 20525056, 329334784, 5812797440, 111923560448, 2334639652864, 52444850814976, 1262260748288000, 32405895451246592, 883950436237705216, 25530268718794276864
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..200
- D. Dominici, Nested derivatives: A simple method for computing series expansions of inverse functions. arXiv:math/0501052v2 [math.CA]
- Dominique Foata & Guo-Niu Han, Arbres minimax et polynomes d'André , Advances in Appl. Math., 27, 2001, p. 367-389.
- Dominique Foata and Guo-Niu Han, Arbres minimax et polynomes d'André. Special issue in honor of Dominique Foata's 65th birthday (Philadelphia, PA, 2000). Adv. in Appl. Math. 27 (2001), no. 2-3, 367-389.
- E. Norton, Symplectic Reflection Algebras in Positive Characteristic as Ore Extensions, arXiv preprint arXiv:1302.5411, 2013
Programs
-
Maple
w := (sqrt(2) - 1)/2: seq(simplify((2*sqrt(2))^(n-1)*add(k!*Stirling2(n, k)*w^(k-1), k = 1..n)), n = 1..20); # Peter Bala, Oct 31 2024
-
Mathematica
Range[0, 18]! CoefficientList[ Series[ Tanh[ ArcTanh[ Sqrt[2]] - Sqrt[2] x]/Sqrt[2], {x, 0, 18}], x] (* Robert G. Wilson v *)
-
PARI
{Stirling2(n,k)=(1/k!)*sum(j=0,k,(-1)^j*binomial(k,j)*(k-j)^n)} /* Finite sum given by Peter Bala: */ {a(n)=local(w=(sqrt(2)-1)/2);if(n==0,1,round((2*sqrt(2))^(n-1)*sum(k=1,n,k!*Stirling2(n,k)*w^(k-1))))}
Formula
E.g.f.: ( tanh(arctanh(sqrt(2)) - sqrt(2)*x) )/sqrt(2) = sqrt(2)/2* (1 + (3-2*sqrt(2))* exp(2*sqrt(2)*x) )/( 1 - (3-2*sqrt(2))* exp(2*sqrt(2)*x) ).
Recurrence: a(n+1) = 2*(Sum_{k=0..n} binomial(n,k)*a(k)*a(n-k)) - 0^n.
a(2*n) = 2^n * A006154(2*n), n>0 (conjectured). - Ralf Stephan, Apr 29 2004
For n>0, a(n) = sqrt(2)^(3*n+1)*Sum_{k>=0} k^n/(1+sqrt(2))^(2*k). - Benoit Cloitre, Jan 12 2005
From Peter Bala, Jan 30 2011: (Start)
A finite sum equivalent to the previous formula of Benoit Cloitre is
a(n) = (2*sqrt(2))^(n-1)*Sum_{k = 1..n} k!*Stirling2(n,k)*w^(k-1), for n >= 1, with w = (sqrt(2) - 1)/2.
This formula can be used to prove congruences for a(n). For example, a(p) == (-1)^((p^2-1)/8) (mod p) for odd prime p.
For similar formulas for labeled plane and non-plane unary-binary trees see A080635 and A000111 respectively.
For a sequence of related polynomials see A185419. For a recursive table to calculate a(n) see A185420.
The e.g.f. A(x) satisfies the autonomous differential equation d/dx (A(x)) = 2*A(x)^2 - 1. (End)
From Peter Bala, Aug 26 2011: (Start)
The inverse function A(x)^(-1) of the generating function A(x) satisfies A(x)^(-1) = Integral_{t = 1..x} 1/(2*t^2 - 1) dt.
Let f(x) = 2*x^2 - 1. Define the nested derivative D^n[f](x) by means of the recursion D^0[f](x) = 1 and D^(n+1)[f](x) = d/dx(f(x)*D^n[f](x)) for n >= 0 (see A145271 for the coefficients in the expansion of D^n[f](x) in powers of f(x)). Then by [Dominici, Theorem 4.1] we have a(n+1) = D^n[f](1).
For n >= 1 we have a(n) = (2 + sqrt(2))^(n-1)*A(n, 3 - 2*sqrt(2)), where {A(n, x)}n>=1 = [1, 1 + x, 1 + 4*x + x^2, 1 + 11*x + 11*x^2 + x^3, ...] denotes the sequence of Eulerian polynomials (see A008292).
a(n+1) = (-1)^n*(sqrt(-2))^n * R(n, sqrt(-2)) where R(n, x) are the polynomials defined in A185896 (derivative polynomials associated with the function sec^2(x)). (End)
G.f.: 1 + x/G(0) where G(k) = 1 - 4*x*(k+1) - 2*x^2*(k+1)*(k+2)/G(k+1); (continued fraction). - Sergei N. Gladkovskii, Jan 11 2013
G.f.: 1 + x/(G(0) -x), where G(k) = 1 - x*(k+1) - 2*x*(k+1)/(1 - x*(k+2)/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 24 2013
E.g.f.: sqrt(2)*( -1/2 + (3+2*sqrt(2))/(4 + 2*sqrt(2)- E(0) )), where E(k) = 2 + 2*sqrt(2)*x/( 2*k+1 - 2*sqrt(2)*x/E(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 27 2013
a(n) ~ n! * 2^((3*n+1)/2) / (log(3+2*sqrt(2)))^(n+1). - Vaclav Kotesovec, Feb 25 2014
Comments