A185422 Forests of k increasing plane unary-binary trees on n nodes. Generalized Stirling numbers of the second kind associated with A185415.
1, 1, 1, 3, 3, 1, 9, 15, 6, 1, 39, 75, 45, 10, 1, 189, 459, 330, 105, 15, 1, 1107, 3087, 2709, 1050, 210, 21, 1, 7281, 23535, 23814, 11109, 2730, 378, 28, 1, 54351, 197235, 228285, 122850, 36099, 6174, 630, 36, 1
Offset: 1
Examples
Triangle begins n\k|....1......2......3......4......5......6......7 =================================================== ..1|....1 ..2|....1......1 ..3|....3......3......1 ..4|....9.....15......6......1 ..5|...39.....75.....45.....10......1 ..6|..189....459....330....105.....15......1 ..7|.1107...3087...2709...1050....210.....21......1 .. Examples of the recurrence: T(5,1) = 39 = T(4,0)+1*T(4,1)+2*T(4,2) = 1*9+2*15; T(6,3) = 330 = T(5,2)+3*T(5,3)+3*4*T(5,4) = 75+3*45+12*10. Examples of forests: T(4,1) = 9. The 9 plane increasing unary-binary trees on 4 nodes are shown in the example section of A080635. T(4,2) = 15. The 15 forests consisting of two plane increasing unary-binary trees on 4 nodes consist of the 12 forests ......... ......... ...3..... .2...3... .3...2... ...|..... ..\./.... ..\./.... ...2..... ...1...4. ...1...4. ...|..... ......... ......... ...1...4. . ......... ......... ...4..... .2...4... .4...2... ...|..... ..\./.... ..\./.... ...2..... ...1...3. ...1...3. ...|..... ......... ......... ...1...3. . ......... ......... ...4..... .3...4... .4...3... ...|..... ..\./.... ..\./.... ...3..... ...1...2. ...1...2. ...|..... ......... ......... ...1...2. ......... ......... ...4..... .3...4... .4...3... ...|..... ..\./.... ..\./.... ...3..... ...2...1. ...2...1. ...|..... ......... ......... ...2...1. . and the three remaining forests ......... ......... .......... ..2..4... ..3..4... ..4...3... ..|..|... ..|..|... ..|...|... ..1..3... ..1..2... ..1...2... ......... ......... ..........
References
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of Increasing Trees, in Lecture Notes in Computer Science vol. 581, ed. J.-C. Raoult, Springer 1922, pp. 24-48.
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- F. Bergeron, Ph. Flajolet and B. Salvy, Varieties of increasing trees
- T. Copeland, Mathemagical Forests
Programs
-
Maple
#A185422 P := proc(n,x) description 'polynomial sequence P(n,x) A185415' if n = 0 return 1 else return x*(P(n-1,x-1)-P(n-1,x)+P(n-1,x+1)) end proc: with combinat: T:= (n,k) -> 1/k!*add ((-1)^(k-j)*binomial(k,j)*P(n,j),j = 0..k): for n from 1 to 10 do seq(T(n,k),k = 1..n); end do;
-
Mathematica
t[n_, k_] := t[n, k] = t[n-1, k-1] + k*t[n-1, k] + k*(k+1)*t[n-1, k+1]; t[n_, n_] = 1; t[n_, k_] /; Not[1 <= k <= n] = 0; Table[t[n, k], {n, 1, 9}, {k, 1, n}] // Flatten (* Jean-François Alcover, Nov 22 2012, from given recurrence *)
-
PARI
{T(n,k)=if(n<1||k<1||k>n,0,if(n==k,1,T(n-1,k-1)+k*T(n-1,k)+k*(k+1)*T(n-1,k+1)))}
-
PARI
{T(n,k)=round(n!*polcoeff(polcoeff(exp(y*(-1/2+sqrt(3)/2*tan(sqrt(3)/2*x+Pi/6+x*O(x^n)))+y*O(y^k)),n,x),k,y))}
-
Sage
# uses[bell_matrix from A264428] # Adds a column 1,0,0,0, ... at the left side of the triangle. bell_matrix(lambda n: A080635(n+1), 10) # Peter Luschny, Jan 18 2016
Formula
TABLE ENTRIES
(1)... T(n,k) = (1/k!)*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*P(n,j),
where P(n,x) are the polynomials described in A185415.
Compare (1) with the formula for the Stirling numbers of the second kind
(2)... Stirling2(n,k) = 1/k!*Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*j^n.
RECURRENCE RELATION
(3)... T(n+1,k) = T(n,k-1) + k*T(n,k) + k*(k+1)*T(n,k+1).
GENERATING FUNCTION
Let E(t) = 1/2 + sqrt(3)/2*tan(sqrt(3)/2*t + Pi/6) be the e.g.f. for A080635.
The e.g.f. for the present triangle is
(4)... exp{x*(E(t)-1)} = Sum_{n>=0} R(n,x)*t^n/n!
= 1 + x*t + (x+x^2)*t^2/2! + (3*x+3*x^2+x^3)*t^3/3! + ....
ROW POLYNOMIALS
The row generating polynomials R(n,x) satisfy the recurrence
(5)... R(n+1,x) = x*{R(n,x)+R'(n,x)+R''(n,x)},
where the prime ' indicates differentiation with respect to x.
RELATIONS WITH OTHER SEQUENCES
Column 1 is A080635.
k!*T(n,k) counts ordered forests A185423(n,k).
The row polynomials R(n,x) are given by D^n(exp(x*t)) evaluated at t = 0, where D is the operator (1+t+t^2)*d/dt. Cf. A147315 and A008297. - Peter Bala, Nov 25 2011
Comments