cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126168 Sum of the proper infinitary divisors of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 36, 1, 16, 13, 12, 1, 42, 1, 19, 15, 20, 13, 14, 1, 22, 17, 50, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 66, 17, 64, 23, 32, 1, 60, 1, 34, 17, 21, 19, 78, 1, 22, 27, 74, 1, 78, 1, 40, 29
Offset: 1

Views

Author

Ant King, Dec 21 2006

Keywords

Comments

A divisor of n is called infinitary if it is a product of divisors of the form p^{y_a 2^a}, where p^y is a prime power dividing n and sum_a y_a 2^a is the binary representation of y.

Examples

			As the infinitary divisors of 240 are 1, 3, 5, 15, 16, 48, 80, 240, we have a(240) = 1 + 3 + 5 + 15 + 16 + 48 + 80 = 168.
		

Crossrefs

Programs

  • Maple
    A049417 := proc(n)
        local a,pe,k,edgs,p ;
        a := 1;
        for pe in ifactors(n)[2] do
            p := op(1,pe) ;
            edgs := convert(op(2,pe),base,2) ;
            for k from 0 to nops(edgs)-1 do
                dk := op(k+1,edgs) ;
                a := a*(p^(2^k*(1+dk))-1)/(p^(2^k)-1) ;
            end do:
        end do:
        a ;
    end proc:
    A126168 := proc(n)
        A049417(n)-n ;
    end proc:
    seq(A126168(n),n=1..100) ; # R. J. Mathar, Jul 23 2021
  • Mathematica
    ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; properinfinitarydivisorsum /@ Range[75]
    f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); a[n_] := isigma[n] - n; Array[a, 100] (* Amiram Eldar, Mar 20 2025 *)
  • PARI
    A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)))} \\ This function from Andrew Lelechenko, Apr 22 2014
    A126168(n) = (A049417(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula.

Formula

a(n) = isigma(n) - n = A049417(n) - n.