A126168 Sum of the proper infinitary divisors of n.
0, 1, 1, 1, 1, 6, 1, 7, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 36, 1, 16, 13, 12, 1, 42, 1, 19, 15, 20, 13, 14, 1, 22, 17, 50, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 66, 17, 64, 23, 32, 1, 60, 1, 34, 17, 21, 19, 78, 1, 22, 27, 74, 1, 78, 1, 40, 29
Offset: 1
Examples
As the infinitary divisors of 240 are 1, 3, 5, 15, 16, 48, 80, 240, we have a(240) = 1 + 3 + 5 + 15 + 16 + 48 + 80 = 168.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Infinitary Divisor.
Programs
-
Maple
A049417 := proc(n) local a,pe,k,edgs,p ; a := 1; for pe in ifactors(n)[2] do p := op(1,pe) ; edgs := convert(op(2,pe),base,2) ; for k from 0 to nops(edgs)-1 do dk := op(k+1,edgs) ; a := a*(p^(2^k*(1+dk))-1)/(p^(2^k)-1) ; end do: end do: a ; end proc: A126168 := proc(n) A049417(n)-n ; end proc: seq(A126168(n),n=1..100) ; # R. J. Mathar, Jul 23 2021
-
Mathematica
ExponentList[n_Integer, factors_List] := {#, IntegerExponent[n, # ]} & /@ factors; InfinitaryDivisors[1] := {1}; InfinitaryDivisors[n_Integer?Positive] := Module[ { factors = First /@ FactorInteger[n], d = Divisors[n] }, d[[Flatten[Position[ Transpose[ Thread[Function[{f, g}, BitOr[f, g] == g][ #, Last[ # ]]] & /@ Transpose[Last /@ ExponentList[ #, factors] & /@ d]], ?( And @@ # &), {1}]] ]] ] Null; properinfinitarydivisorsum[k] := Plus @@ InfinitaryDivisors[k] - k; properinfinitarydivisorsum /@ Range[75] f[p_, e_] := p^(2^(-1 + Position[Reverse @ IntegerDigits[e, 2], ?(# == 1 &)])); isigma[1] = 1; isigma[n] := Times @@ (Flatten@(f @@@ FactorInteger[n]) + 1); a[n_] := isigma[n] - n; Array[a, 100] (* Amiram Eldar, Mar 20 2025 *)
-
PARI
A049417(n) = {my(b, f=factorint(n)); prod(k=1, #f[, 2], b = binary(f[k, 2]); prod(j=1, #b, if(b[j], 1+f[k, 1]^(2^(#b-j)), 1)))} \\ This function from Andrew Lelechenko, Apr 22 2014 A126168(n) = (A049417(n) - n); \\ Antti Karttunen, Oct 04 2017, after the given formula.
Formula
a(n) = isigma(n) - n = A049417(n) - n.
Comments