A387239
a(n) = Sum_{k=0..n} binomial(n+3,k+3) * binomial(2*k+6,k+6).
Original entry on oeis.org
1, 12, 95, 630, 3801, 21672, 119154, 639180, 3369795, 17543196, 90476100, 463291920, 2359240975, 11961944400, 60440659640, 304543085040, 1531044995355, 7682898791700, 38494752520175, 192632866196694, 962948703201331, 4809438625979592, 24002988378037350, 119719958370912900
Offset: 0
-
[&+[Binomial(n+3,k+3) * Binomial(2*k+6,k+6): k in [0..n]]: n in [0..25]]; // Vincenzo Librandi, Aug 24 2025
-
Table[Sum[Binomial[n+3,k+3]* Binomial[2*k+6, k+6],{k,0,n}],{n,0,25}] (* Vincenzo Librandi, Aug 24 2025 *)
-
a(n) = sum(k=0, n, binomial(n+3, k+3)*binomial(2*k+6, k+6));
A387238
Expansion of 1/((1-x) * (1-5*x))^(7/2).
Original entry on oeis.org
1, 21, 266, 2646, 22806, 178794, 1310694, 9140274, 61330269, 399107709, 2533330800, 15751925280, 96257031780, 579556206180, 3445117599480, 20252115155160, 117890464642335, 680320688005035, 3895668955041710, 22152779612619810, 125183331416173030
Offset: 0
-
R := PowerSeriesRing(Rationals(), 34); f := 1/((1-x) * (1-5*x))^(7/2); coeffs := [ Coefficient(f, n) : n in [0..33] ]; coeffs; // Vincenzo Librandi, Aug 24 2025
-
CoefficientList[Series[1/((1-x)*(1-5*x))^(7/2),{x,0,33}],x] (* Vincenzo Librandi, Aug 24 2025 *)
-
my(N=30, x='x+O('x^N)); Vec(1/((1-x)*(1-5*x))^(7/2))
A126188
Triangle read by rows: T(n,k) is the number of hex trees with n edges and k pairs of adjacent vertices of outdegree 2.
Original entry on oeis.org
1, 3, 10, 36, 135, 2, 519, 24, 2034, 180, 5, 8100, 1110, 75, 32688, 6210, 675, 14, 133380, 32886, 4851, 252, 549342, 168210, 30996, 2646, 42, 2280690, 840132, 184842, 21672, 882, 9534591, 4124682, 1053486, 154980, 10584, 132, 40103019
Offset: 0
Triangle starts:
1;
3;
10;
36;
135, 2;
519, 24;
2034, 180, 5;
8100, 1110, 75;
-
G:=1/2*(12*z^3*t+2*z^2*t^2-2*z^2*t-6*z^3*t^2-3*z-6*z^3+1-sqrt(1+9*z^2-4*z^2*t-6*z+12*z^3*t-12*z^3))/z^2/(3*z*t-t-3*z)^2: Gser:=simplify(series(G,z=0,18)): for n from 0 to 14 do P[n]:=sort(coeff(Gser,z,n)) od: 1;3;for n from 2 to 14 do seq(coeff(P[n],t,j),j=0..floor(n/2)-1) od;
-
g[t_,z_] = G /. Solve[G == 1 + 3z*G + z^2*(1 + 3z*G + t*(G - 1 - 3z*G))^2, G][[1]]; Flatten[ CoefficientList[ CoefficientList[ Series[g[t,z], {z,0,13}], z], t]][[1 ;; 39]] (* Jean-François Alcover, May 27 2011, after g.f. *)
Showing 1-3 of 3 results.
Comments