A126280 Triangle read by rows: T(k,n) is number of numbers <= 10^n that are products of k primes.
4, 4, 1, 25, 34, 22, 12, 4, 2, 168, 299, 247, 149, 76, 37, 14, 7, 2, 1229, 2625, 2569, 1712, 963, 485, 231, 105, 47, 22, 7, 3, 1, 9592, 23378, 25556, 18744, 11185, 5933, 2973, 1418, 671, 306, 138, 63, 25, 11, 4, 2, 78498, 210035, 250853, 198062, 124465, 68963
Offset: 1
Examples
4 4 1 25 34 22 12 4 2 168 299 247 149 76 37 14 7 2 1229 2625 2569 1712 963 485 231 105 47 22 7 3 1 9592 23378 25556 18744 11185 5933 2973 1418 671 306 138 63 25 11 4 2 78498 210035 250853 198062 124465 68963 35585 17572 8491 4016 1878 865 400 179 79 35 14 7 2 664579 1904324 2444359 2050696 1349779 774078 409849 207207 101787 49163 23448 11068 5210 2406 1124 510 233 102 45 21 7 3 1
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..342
- Eric Weisstein's World of Mathematics, Semiprime.
- Eric Weisstein's World of Mathematics, Almost Prime.
Crossrefs
Programs
-
Mathematica
AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[ PrimePi[ n/Times @@ Prime[ Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[ Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]] ]]]; (* Eric W. Weisstein, Feb 07 2006 *) Table[ AlmostPrimePi[m, 10^n], {n, 6}, {m, Floor[Log[2, 10^n]] }] // Flatten
Comments