A126285 Number of partial mappings (or mapping patterns) from n points to themselves; number of partial endofunctions.
1, 2, 6, 16, 45, 121, 338, 929, 2598, 7261, 20453, 57738, 163799, 465778, 1328697, 3798473, 10883314, 31237935, 89812975, 258595806, 745563123, 2152093734, 6218854285, 17988163439, 52078267380, 150899028305, 437571778542, 1269754686051, 3687025215421
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..750
- R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations, arXiv preprint arXiv:1512.00906 [math.NA], 2015-2017.
- N. J. A. Sloane, Transforms
Programs
-
Mathematica
nmax = 28; a81[n_] := a81[n] = If[n<2, n, Sum[Sum[d*a81[d], {d, Divisors[j]}]*a81[n-j ], {j, 1, n-1}]/(n-1)]; A[n_] := A[n] = If[n<2, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1} ]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, nmax+2}]; F = 1/Product[1 - H[x^n], {n, 1, nmax+2}] + O[x]^(nmax+2); A1372 = CoefficientList[F, x]; a[n_] := Sum[a81[k] * A1372[[n-k+2]], {k, 0, n+1}]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 18 2018, after Franklin T. Adams-Watters *)
-
Sage
Pol.
= InfinitePolynomialRing(QQ) @cached_function def Z(n): if n==0: return Pol.one() return sum(t[k]*Z(n-k) for k in (1..n))/n def pmagmas(n,k=1): # number of partial k-magmas on a set of n elements up to isomorphism P = Z(n) q = 0 coeffs = P.coefficients() count = 0 for m in P.monomials(): p = 1 V = m.variables() T = cartesian_product(k*[V]) for t in T: r = [Pol.varname_key(str(u))[1] for u in t] j = [m.degree(u) for u in t] D = 1 lcm_r = lcm(r) for d in divisors(lcm_r): try: D += d*m.degrees()[-d-1] except: break p *= D^(prod(r)/lcm_r*prod(j)) q += coeffs[count]*p count += 1 return q # Philip Turecek, Nov 27 2023
Formula
Euler transform of A002861 + A000081 = [1, 2, 4, 9, 20, 51, 125, 329, 862, 2311, ... ] + [ 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, ...] = A124682.
a(n) ~ c * d^n / sqrt(n), where d = 2.95576528565... is the Otter's rooted tree constant (see A051491) and c = 1.309039781943936352117502717... - Vaclav Kotesovec, Mar 29 2014
Comments