A337611 Positive integers m such that A126288^k(m) = m for some positive integer k.
2, 3, 6, 10, 14, 20, 22, 26, 28, 38, 44, 46, 52, 76, 78, 88, 94, 102, 105, 114, 116, 117, 136, 138, 152, 171, 186, 187, 195, 207, 212, 247, 248, 266, 282, 284, 285, 296, 304, 322, 333, 354, 366, 369, 387, 402, 403, 407, 414, 423, 425, 426, 430, 437, 442, 468
Offset: 1
Keywords
Examples
3 is a term since A126288(A126288(3)) = A126288(2) = 3.
Links
- Ely Golden, Table of n, a(n) for n = 1..7144
- Ely Golden, Python program for (naïvely) generating terms of this sequence
Programs
-
PARI
gpf(n) = vecmax(factor(n)[,1]); f(n) = if (n==1, 2, n*gpf(n+1)/gpf(n)); \\ A126288 incycle(n, list) = {my(v=Vec(list)); #select(x->(x==n), v);} cycle(n) = {my(list = List(), repeat=1); while(repeat, n = f(n); if (incycle(n, list), repeat=0); listput(list, n);); list;} isok(n) = {my(list = cycle(n)); incycle(n, list);} \\ Michel Marcus, Sep 08 2020
Comments