cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A337612 Positive integers m such that A126289^k(m) = m for some positive integer k.

Original entry on oeis.org

1, 6, 10, 15, 20, 21, 35, 38, 42, 45, 52, 58, 63, 66, 68, 74, 76, 77, 78, 84, 85, 88, 92, 99, 110, 116, 117, 124, 130, 133, 143, 146, 153, 164, 171, 187, 189, 198, 208, 224, 228, 232, 238, 246, 247, 255, 261, 266, 268, 272, 273, 279, 282, 284, 285, 304, 312
Offset: 1

Views

Author

Ely Golden, Oct 06 2020

Keywords

Comments

A126289^k(m) means apply A126289 to m k times.
Equivalently, the numbers that belong to a cycle under the map x -> A126289(x).
There are no primes in this sequence.

Examples

			6 is a term since A126289(A126289(6)) = A126289(10) = 6.
		

Crossrefs

Formula

For any term m, gcd {m, A126289(m), A126289(A126289(m)), ...} = A052126(m).

A126286 a(1) = 2, a(n) = n * LeastPrimeFactor(n+1) / LeastPrimeFactor(n).

Original entry on oeis.org

2, 3, 2, 10, 2, 21, 2, 12, 6, 55, 2, 78, 2, 21, 10, 136, 2, 171, 2, 30, 14, 253, 2, 60, 10, 39, 18, 406, 2, 465, 2, 48, 22, 85, 14, 666, 2, 57, 26, 820, 2, 903, 2, 66, 30, 1081, 2, 168, 14, 75, 34, 1378, 2, 135, 22, 84, 38, 1711, 2, 1830, 2, 93, 42, 160, 26, 2211, 2, 102, 46
Offset: 1

Views

Author

Lior Manor, Dec 25 2006

Keywords

Examples

			a(6) = (6 / LeastPrimeFactor(6)) * LeastPrimeFactor(7) = 21.
		

Crossrefs

Programs

  • Mathematica
    a[1] := 2; a[n_] := n*FactorInteger[n + 1][[1, 1]]/FactorInteger[n][[1, 1]]; Table[a[n], {n, 69}] (* Ivan Neretin, May 20 2015 *)
  • PARI
    a(n) = if (n==1, 2, n*factor(n+1)[1, 1]/factor(n)[1, 1]); \\ Michel Marcus, Aug 14 2013

Formula

a(n) = A032742(n)*A020639(n+1), for n>1. - Ivan Neretin, May 20 2015

A126287 a(1) = 1, a(2) = 1, a(n) = n * LeastPrimeFactor(n-1) / LeastPrimeFactor(n).

Original entry on oeis.org

1, 1, 2, 6, 2, 15, 2, 28, 6, 15, 2, 66, 2, 91, 10, 24, 2, 153, 2, 190, 14, 33, 2, 276, 10, 65, 18, 42, 2, 435, 2, 496, 22, 51, 14, 90, 2, 703, 26, 60, 2, 861, 2, 946, 30, 69, 2, 1128, 14, 175, 34, 78, 2, 1431, 22, 140, 38, 87, 2, 1770, 2, 1891, 42, 96, 26, 165, 2, 2278, 46, 105
Offset: 1

Views

Author

Lior Manor, Dec 25 2006

Keywords

Examples

			a(6) = 6 * LeastPrimeFactor(5) / LeastPrimeFactor(6) = 6 * 5 / 2 = 15
		

Crossrefs

Programs

  • Maple
    N:= 1000: # to get a(1) to a(n)
    a[1]:= 1: a[2]:= 1:
    b:= 2:
    for n from 3 to N do
    c:= min(numtheory:-factorset(n));
    a[n]:= n*b/c;
    b:= c;
    od:
    seq(a[n],n=1..N); # Robert Israel, May 20 2015
  • Mathematica
    a[1] := 1; a[2] := 1; a[n_] := n*FactorInteger[n - 1][[1, 1]]/FactorInteger[n][[1, 1]]; Table[a[n], {n, 70}] (* Ivan Neretin, May 20 2015 *)

Formula

a(n) = A032742(n)*A020639(n-1), for n>2. - Michel Marcus, May 20 2015

A126288 a(1) = 2, a(n) = n * LargestPrimeFactor(n+1) / LargestPrimeFactor(n).

Original entry on oeis.org

2, 3, 2, 10, 3, 14, 2, 12, 15, 22, 3, 52, 7, 10, 6, 136, 3, 114, 5, 28, 33, 46, 3, 40, 65, 6, 63, 116, 5, 186, 2, 176, 51, 14, 15, 444, 19, 26, 15, 328, 7, 258, 11, 20, 207, 94, 3, 112, 35, 170, 39, 212, 3, 198, 35, 152, 87, 118, 5, 732, 31, 14, 18, 416, 55, 402, 17, 92, 21, 710
Offset: 1

Views

Author

Lior Manor, Dec 25 2006

Keywords

Examples

			a(6) = 6 * LargestPrimeFactor(7) / LargestPrimeFactor(6) = 6 * 7 / 3 = 14
		

Crossrefs

Programs

  • Mathematica
    a[1] := 2; a[n_] := n*FactorInteger[n + 1][[-1, 1]]/FactorInteger[n][[-1, 1]]; Table[a[n], {n, 70}] (* Ivan Neretin, May 20 2015 *)
  • PARI
    gpf(n) = vecmax(factor(n)[,1]);
    a(n) = if (n==1, 2, n*gpf(n+1)/gpf(n)); \\ Michel Marcus, Sep 08 2020

Formula

a(n) = A006530(n+1)*A052126(n) for n>1. - Michel Marcus, May 20 2015
Showing 1-4 of 4 results.