cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A125985 Signature-permutation of Vaillé's 1997 bijection on 'bridges' (Dyck paths).

Original entry on oeis.org

0, 1, 3, 2, 8, 7, 5, 6, 4, 22, 21, 18, 20, 17, 13, 12, 19, 15, 16, 10, 11, 14, 9, 64, 63, 59, 62, 58, 50, 49, 61, 55, 57, 46, 48, 54, 45, 36, 35, 32, 34, 31, 60, 56, 41, 52, 40, 47, 53, 43, 44, 27, 26, 33, 29, 30, 51, 38, 39, 42, 24, 25, 28, 37, 23, 196, 195, 190, 194, 189
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

Vaillé shows in 1997 paper that this automorphism transforms a 'derivation' of a Dyck path to its 'compression', i.e., in OEIS terms, A125985(A126310(n)) = A126309(A125985(n)) holds for all n. He also proves that A057515(A125985(n)) = A126307(n) and A057514(A125985(n)) = A072643(n) - A057514(n) + 1 (the latter identity for all n >= 1).

Crossrefs

Inverse: A125986. The number of cycles, maximum cycle sizes and LCM's of all cycle sizes in range [A014137(n-1)..A014138(n-1)] of this permutation are given by A126291, A126292 and A126293. The fixed points are given by A126300/A126301.

Programs

  • Scheme
    (define (A125985 n) (A080300 (rising-list->binexp (A125985-aux2 (A014486 n)))))
    (define (A125985-aux2 n) (let loop ((lists (A125985-aux1 n)) (z (list)) (m 1)) (if (null? lists) z (loop (cdr lists) (m-join z (car lists) m) (+ m 1)))))
    (define (A125985-aux1 n) (if (zero? n) (list) (let ((begin_from (<< 1 (- (- (A000523 n) (A090996 n)) 1)))) (let loop ((s (A090996 n)) (t 0) (nth_list 1) (p begin_from) (b (if (= 0 (A004198bi n begin_from)) 0 1)) (lists (list (list)))) (cond ((< s 1) (cond ((< p 1) (reverse! lists)) (else (loop (- t (- 1 b)) b (+ 1 nth_list) (>> p 1) (if (= 0 (A004198bi n (>> p 1))) 0 1) (cons (list (+ b 1 nth_list)) lists))))) (else (loop (- s (- 1 b)) (+ t b) nth_list (>> p 1) (if (= 0 (A004198bi n (>> p 1))) 0 1) (cons (cons (+ b nth_list) (car lists)) (cdr lists)))))))))
    (define (A125985-aux2 n) (let loop ((lists (A125985-aux1 n)) (z (list)) (m 1)) (if (null? lists) z (loop (cdr lists) (m-join z (car lists) m) (+ m 1)))))
    (define (m-join a b m) (let loop ((a a) (b b) (c (list))) (cond ((and (not (pair? a)) (not (pair? b))) (reverse! c)) ((not (pair? a)) (loop a (cdr b) (cons (car b) c))) ((not (pair? b)) (loop (cdr a) b (cons (car a) c))) ((equal? (car a) (car b)) (loop (cdr a) (cdr b) (cons (car a) c))) ((> (car b) m) (loop a (cdr b) (cons (car b) c))) (else (loop (cdr a) b (cons (car a) c))))))
    (define (rising-list->binexp rising-list) (let loop ((s 0) (i 0) (h 0) (fs rising-list)) (cond ((null? fs) (+ s (<< (- (<< 1 h) 1) i))) ((> (car fs) h) (loop s (+ i 1) (car fs) (cdr fs))) (else (loop (+ s (<< (- (<< 1 (+ 1 (- h (car fs)))) 1) i)) (+ i 2 (- h (car fs))) (car fs) (cdr fs))))))
    (define (>> n i) (if (zero? i) n (>> (floor->exact (/ n 2)) (- i 1))))
    (define (<< n i) (if (<= i 0) (>> n (- i)) (<< (+ n n) (- i 1))))

A125986 Signature-permutation of the inverse of Vaillé's 1997 bijection on Dyck paths.

Original entry on oeis.org

0, 1, 3, 2, 8, 6, 7, 5, 4, 22, 19, 20, 15, 14, 21, 17, 18, 13, 11, 16, 12, 10, 9, 64, 60, 61, 52, 51, 62, 54, 55, 41, 39, 53, 40, 38, 37, 63, 57, 58, 46, 44, 59, 49, 50, 36, 33, 47, 34, 29, 28, 56, 45, 48, 35, 31, 43, 32, 27, 25, 42, 30, 26, 24, 23, 196, 191, 192, 178, 177
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Crossrefs

Inverse: A125985. Cf. A057515, A071158. Algorithm is partially described in A126301.

A126299 Factorial codes for the fixed points of the square of Vaillé's 1997 bijection on Dyck paths.

Original entry on oeis.org

0, 1, 11, 21, 111, 321, 1111, 4321, 11111, 23211, 54321, 111111, 122211, 324321, 654321, 1111111, 1222121, 2432211, 3244321, 7654321, 11111111, 22121321, 34443211, 87654321, 111111111, 122322121, 325543321, 987654321, 1111111111
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

From n=31 the terms cannot anymore be presented unambiguously with decimal numbers, as A126298(31)=23713, A071156(23713)=39916799 and A007623(39916799) would result the factorial expansion "T987654321", where T stands for digit "ten".

Crossrefs

Superset of A126301. Number of terms of length n is given by A126295(n).

Formula

a(n) = A071158(A126298(n)).

A126300 Fixed points of the permutation A125985/A125986.

Original entry on oeis.org

0, 1, 47, 443, 653479, 10269977
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

Those i, for which A125985(i)=i. A126301 shows the same fixed points using factorial code as employed in Vaillé's paper.

Crossrefs

Subset of A126298. Cf. A126295. A126311(n) = A071156(a(n)).

A126311 A071156-codes for the fixed points of the permutation A125985/A125986.

Original entry on oeis.org

0, 1, 327, 13383, 14107138025, 4217868316383
Offset: 0

Views

Author

Antti Karttunen, Jan 02 2007

Keywords

Comments

A126301 shows the same terms in factorial base notation.

Crossrefs

Formula

a(n) = A071156(A126300(n))
Showing 1-5 of 5 results.