A126351 Triangle read by rows: matrix product of the Stirling numbers of the second kind with the binomial coefficients.
1, 1, 2, 1, 5, 4, 1, 9, 19, 8, 1, 14, 55, 65, 16, 1, 20, 125, 285, 211, 32, 1, 27, 245, 910, 1351, 665, 64, 1, 35, 434, 2380, 5901, 6069, 2059, 128, 1, 44, 714, 5418, 20181, 35574, 26335, 6305, 256, 1, 54, 1110, 11130, 58107, 156660, 204205, 111645, 19171, 512
Offset: 1
Examples
Matrix begins: 1, 2, 4, 8, 16, 32, 64, 128, 256, ... A000079 0, 1, 5, 19, 65, 211, 665, 2059, 6305, ... A001047 0, 0, 1, 9, 55, 285, 1351, 6069, 26335, ... A016269 0, 0, 0, 1, 14, 125, 910, 5901, 35574, ... A025211 0, 0, 0, 0, 1, 20, 245, 2380, 20181, ... 0, 0, 0, 0, 0, 1, 27, 434, 5418, ... 0, 0, 0, 0, 0, 0, 1, 35, 714, ... 0, 0, 0, 0, 0, 0, 0, 1, 44, ... 0, 0, 0, 0, 0, 0, 0, 0, 1, ... Triangle begins: 1; 1, 2; 1, 5, 4; 1, 9, 19, 8; 1, 14, 55, 65, 16;
Links
- Alois P. Heinz, Rows n = 1..100, flattened
Programs
-
Maple
T:= (n, k)-> add(binomial(n-1, i-1) *Stirling2(i, n+1-k), i=1..n): seq(seq(T(n, k), k=1..n), n=1..10); # Alois P. Heinz, Sep 29 2011
-
Mathematica
T[n_, k_] := Sum[Binomial[n-1, i-1]*StirlingS2[i, n+1-k], {i, 1, n}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)
Formula
(In Maple notation:) Matrix product B.A of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling2(j,i) with i from 1 to d, j from 1 to d, d=9.
T(n,k) = Sum_{i=1..n} C(n-1,i-1) * Stirling2(i, n+1-k). - Alois P. Heinz, Sep 29 2011
Comments