cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126351 Triangle read by rows: matrix product of the Stirling numbers of the second kind with the binomial coefficients.

Original entry on oeis.org

1, 1, 2, 1, 5, 4, 1, 9, 19, 8, 1, 14, 55, 65, 16, 1, 20, 125, 285, 211, 32, 1, 27, 245, 910, 1351, 665, 64, 1, 35, 434, 2380, 5901, 6069, 2059, 128, 1, 44, 714, 5418, 20181, 35574, 26335, 6305, 256, 1, 54, 1110, 11130, 58107, 156660, 204205, 111645, 19171, 512
Offset: 1

Views

Author

Thomas Wieder, Dec 29 2006

Keywords

Comments

Many well-known integer sequences arise from such a matrix product of combinatorial coefficients. In the present case we have as the first row A000079 = the powers of two = 2^n. As the second row we have A001047 = 3^n - 2^n. As the column sums we have 1,3,10,37,151,674,3263,17007,94828 we have A005493 = number of partitions of [n+1] with a distinguished block.

Examples

			Matrix begins:
1, 2, 4,  8, 16,  32,   64,  128,   256, ... A000079
0, 1, 5, 19, 65, 211,  665, 2059,  6305, ... A001047
0, 0, 1,  9, 55, 285, 1351, 6069, 26335, ... A016269
0, 0, 0,  1, 14, 125,  910, 5901, 35574, ... A025211
0, 0, 0,  0,  1,  20,  245, 2380, 20181, ...
0, 0, 0,  0,  0,   1,   27,  434,  5418, ...
0, 0, 0,  0,  0,   0,    1,   35,   714, ...
0, 0, 0,  0,  0,   0,    0,    1,    44, ...
0, 0, 0,  0,  0,   0,    0,    0,     1, ...
Triangle begins:
1;
1,  2;
1,  5,  4;
1,  9, 19,  8;
1, 14, 55, 65, 16;
		

Crossrefs

Programs

  • Maple
    T:= (n, k)-> add(binomial(n-1, i-1) *Stirling2(i, n+1-k), i=1..n):
    seq(seq(T(n, k), k=1..n), n=1..10);  # Alois P. Heinz, Sep 29 2011
  • Mathematica
    T[n_, k_] := Sum[Binomial[n-1, i-1]*StirlingS2[i, n+1-k], {i, 1, n}]; Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 08 2016, after Alois P. Heinz *)

Formula

(In Maple notation:) Matrix product B.A of matrix A[i,j]:=binomial(j-1,i-1) with i = 1 to p+1, j = 1 to p+1, p=8 and of matrix B[i,j]:=stirling2(j,i) with i from 1 to d, j from 1 to d, d=9.
T(n,k) = Sum_{i=1..n} C(n-1,i-1) * Stirling2(i, n+1-k). - Alois P. Heinz, Sep 29 2011