cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A126354 a(n) = 6*a(n-2) - a(n-4) for n > 4, with a(1)=1, a(2)=0, a(3)=3, a(4)=2.

Original entry on oeis.org

1, 0, 3, 2, 17, 12, 99, 70, 577, 408, 3363, 2378, 19601, 13860, 114243, 80782, 665857, 470832, 3880899, 2744210, 22619537, 15994428, 131836323, 93222358, 768398401, 543339720, 4478554083, 3166815962, 26102926097, 18457556052, 152139002499
Offset: 1

Views

Author

Zak Seidov, Dec 26 2006

Keywords

Comments

Each pair of terms {odd=x, even=y} gives a solution to the Pell equation x^2 - 2y^2 = 1. Note that odd/even terms also have odd/even indices. The ratio a(2k-1)/a(2k) tends to sqrt(2). Interrelations between odd and even terms: a(2k+1) = 3a(2k-1) + 4a(2k); e.g., 99 = 3*17 + 4*12, 577 = 3*99 + 4*70; a(2k) = 3a(2k-2) + 2a(2k-3), e.g., 70 = 3*12 + 2*17, 408 = 3*70 + 2*99. Odd terms = A001541, even terms = 2*A001109.

Crossrefs

Programs

  • GAP
    a:=[1, 0, 3, 2];; for n in [5..35] do a[n]:=6*a[n-2]-a[n-4]; od; a; # G. C. Greubel, Mar 16 2019
  • Magma
    I:=[1, 0, 3, 2]; [n le 4 select I[n] else 6*Self(n-2)-Self(n-4): n in [1..35]]; // G. C. Greubel, Mar 16 2019
    
  • Mathematica
    LinearRecurrence[{0,6,0,-1}, {1,0,3,2}, 35] (* G. C. Greubel, Mar 16 2019 *)
  • PARI
    my(x='x+O('x^35)); Vec(x*(1+2*x)*(1-x)^2/((1-2*x-x^2)*(1+2*x-x^2))) \\ G. C. Greubel, Mar 16 2019
    
  • Sage
    a=(x*(1+2*x)*(1-x)^2/((1-2*x-x^2)*(1+2*x-x^2))).series(x, 35).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Mar 16 2019
    

Formula

O.g.f.: x*(2*x+1)*(-1+x)^2/((x^2-2*x-1)*(x^2+2*x-1)). - R. J. Mathar, Dec 10 2007